APNEP's Estuarine Water Quality & Surficial Sediment Monitoring Strategy (Draft)

Dean Carpenter
Albemarle-Pamlico National Estuary Partnership

Water Resources Monitoring & Assessment 3 August 2023

2022 Water Resources Monitoring & Assessment Review

- A-P ambient monitoring program (2000)
- APNEP indicator criteria (2006)
- EPA indicator development (2007)
- MAT objectives 2008-present

APNEP's Ecosystem Health Goals

- A region where human communities are sustained by a functioning ecosystem
- A region where aquatic, wetland, and upland habitats support viable populations of native species
- A region where water quantity and quality maintain ecological integrity

Figure 2: APNEP's adaptive management cycle.

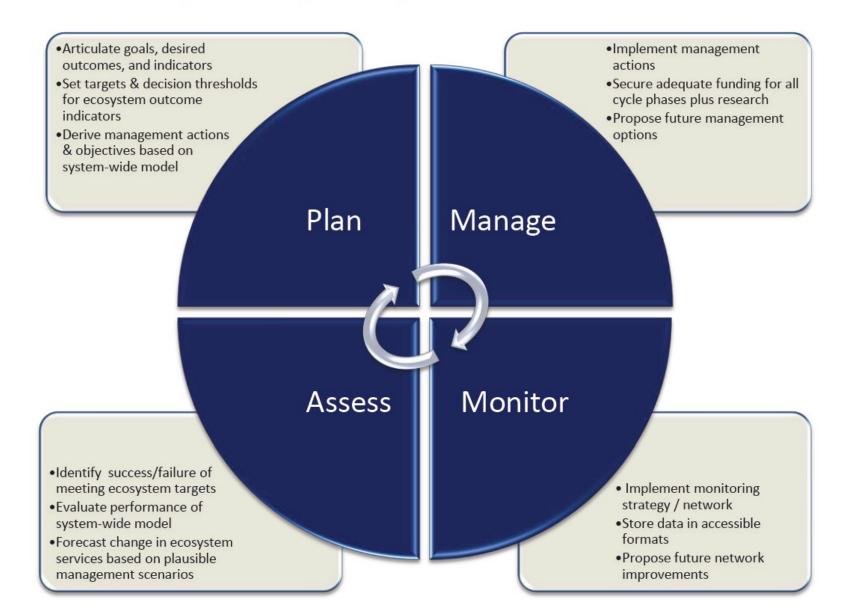


Figure 2: APNEP's adaptive management cycle.

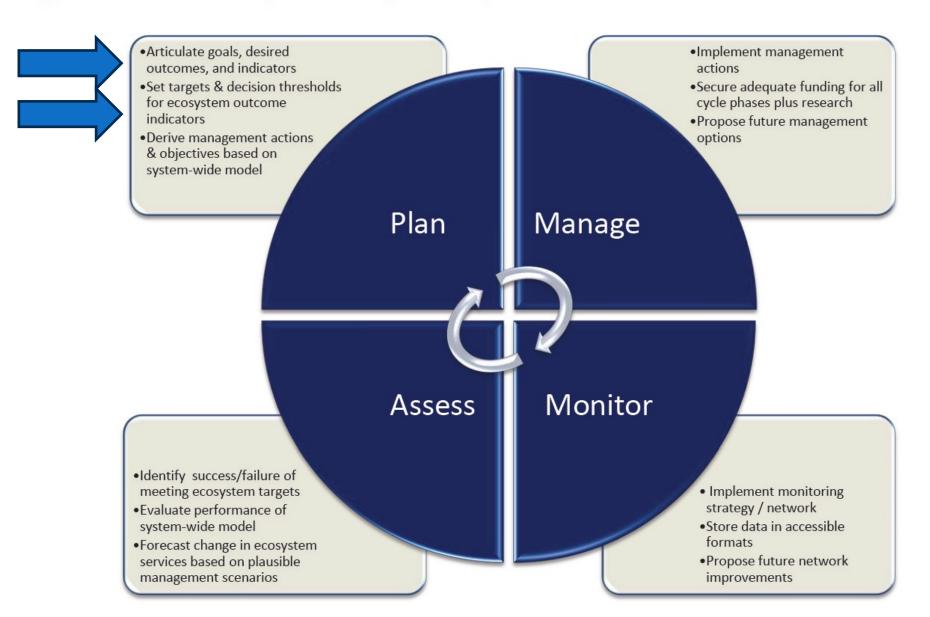
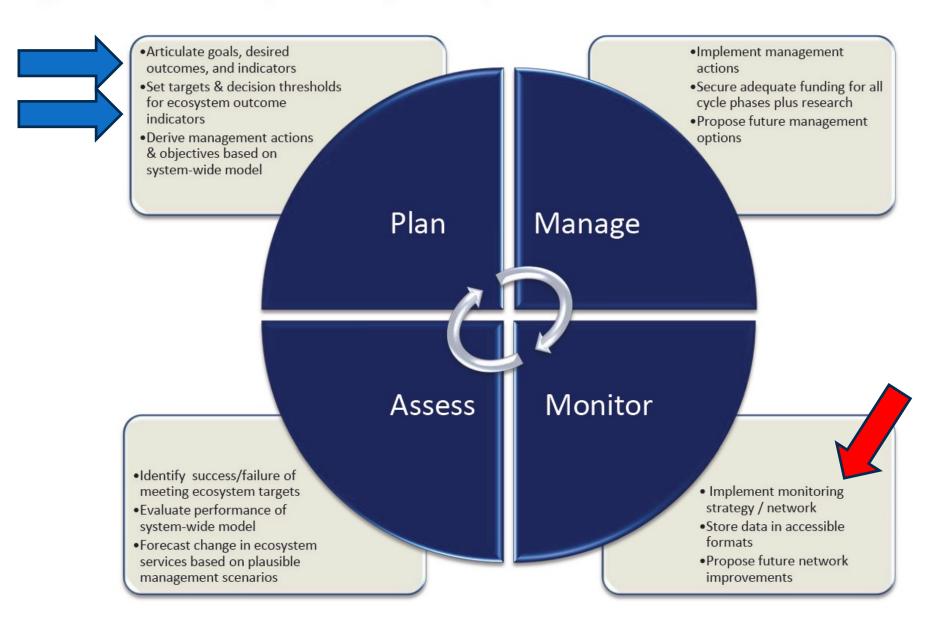
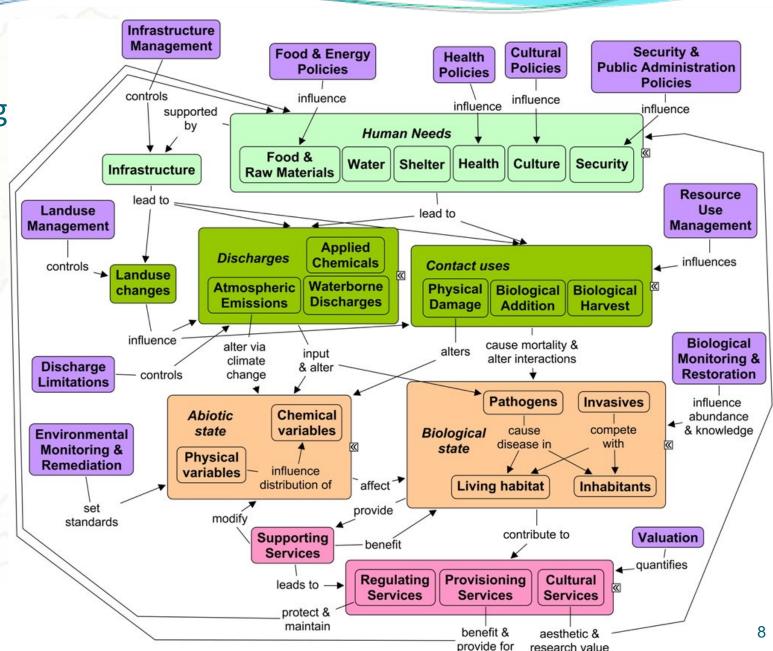



Figure 2: APNEP's adaptive management cycle.

APNEP Deliverables 2023-2024

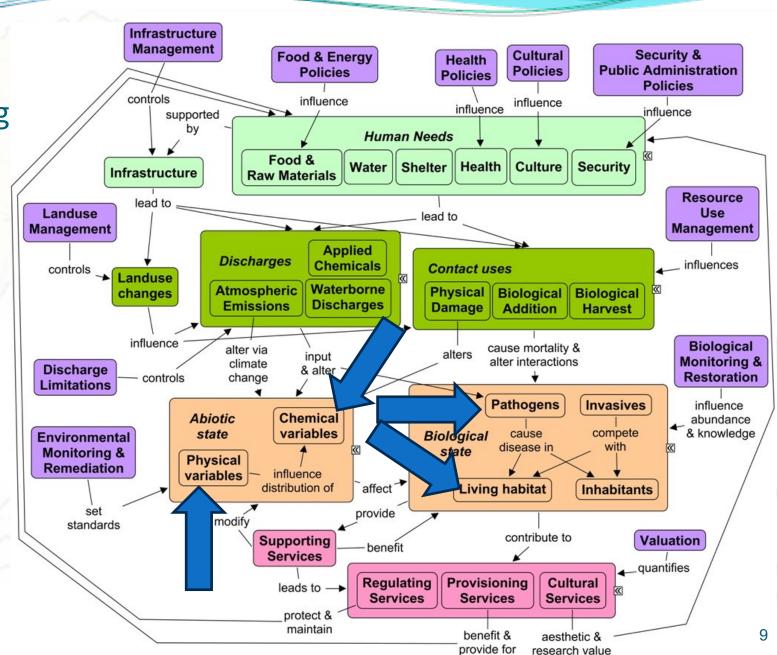
- Comprehensive Conservation & Management Plan (CCMP) 3.0 (November 2023)
- Regional Ecosystem Assessment 2.0 (Fall 2024)
- Integrated Monitoring Framework 1.0 (December 2023)

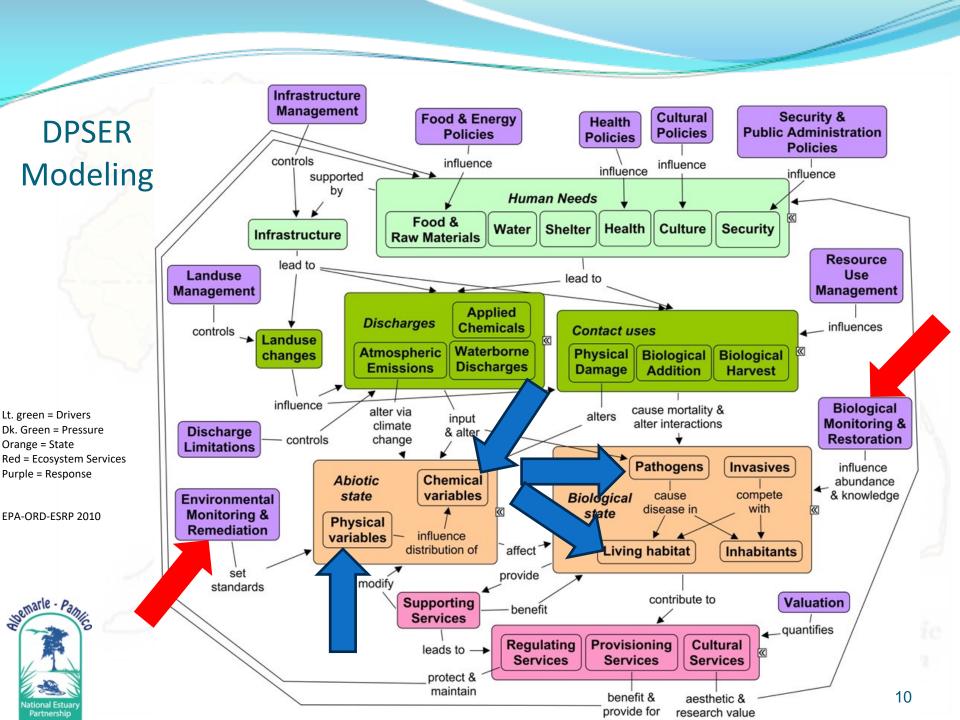


DPSER Modeling

Lt. green = Drivers Dk. Green = Pressure Orange = State Red = Ecosystem Services Purple = Response

EPA-ORD-ESRP 2010


research value


DPSER Modeling


Lt. green = Drivers
Dk. Green = Pressure
Orange = State
Red = Ecosystem Services
Purple = Response

EPA-ORD-ESRP 2010

Estuarine Monitoring: Water and Surficial Sediments

Version 0.1 July 2023

Prepared by

Dean E. Carpenter, APNEP

Timothy A. Ellis, APNEP

Nathan S. Hall, UNC-CH

ACKNOWLEDGMENTS

The authors wish to recognize the following APNEP Water Resources Monitoring & Assessment Team and Science & Technical Advisory Committee members who participated in a series of APNEP monitoring subcommittee meetings during [Months 2023], and whose consensus from their deliberations form the basis of estuarine metrics and monitoring strategies outlined in this plan: [Participants List]. The authors also recognize the APNEP Management Conference and staff who provided valuable feedback on draft versions of this document.

Page 1 of 74

Estuarine Water Quality Assessment Questions

- Are estuarine water quality conditions suitable to sustain the ecosystem services...
 - ... provided by SAV species?
 - ... associated with recreational activities (e.g., swimming, canoeing and kayaking)?
 - ... provided by estuarine fauna (e.g., fishing, clam and oyster harvest)?
 - ... provided by coastal wetlands (e.g., sediment loading)?
 - ...provided by coastal landscapes, including natural vegetation (e.g., coastal forests), wildlife (e.g., fish and bird habitat) and aesthetics (e.g., attractive viewpoints, estuarine debris)?

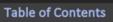


Table 3. Module/Sub-Module/Indicator/Metric hierarchy addressed in this plan. (*) = metrics that were recommended for continuous long-term monitoring in APNEP's first (1989) baseline water quality monitoring plan. (^) = metrics also supporting the "Phytoplankton" indicator. (#) = metric also supporting water column clarity.

+	Module/Sub-Module	Indicator	Metrics
			Enterococci concentration
		Water Column Pathogens	Shellfish closure areas
			Chlorophyll a concentration#
		Dh. dan lankan	Extent & frequency of algal blooms
		Phytoplankton	Cyanobacteria density
			Algal toxins
		Sediment Quality	Chemical contaminant index
			Sediment toxicity index
			Sediment moisture and organic
	Aquatic/Estuarine		contents
		Water Column Clarity	PAR attenuation
			Secchi depth/ transparency
		Water column clarity	Turbidity
			CDOM
			Water temperature*
			Salinity*
			Dissolved oxygen concentration*^
			Hydrogen ion concentration (pH)^
		Water Column Physical- Chemical	Nutrients: Nitrogen
			(Nitrate/Nitrite+ Ammonium +
			DON + Particulate N), Phosphorus
			(Orthophosphate + OP + TP),
			Carbon (DIC + DOC + Particulate C)
			concentrations
			Relative sea level
			Underwater Soundscape
			SVOCs concentration
			Plastic waste concentration
		Water Column Contaminant Chemistry	Dissolved metals concentration
			PFAS concentration
			Pharmaceutical & personal care
			products (PPCPs)concentration

Preface	:
Acronyms and Abbreviations	· ·
1. Background	:
1.1. Purpose of Monitoring Strategy	:
1.2. Scope of Monitoring Strategy	1
1.3. Conceptual Models	1
1.3.1. Conceptual Models from Literature	1
1.3.2. APES Model Components	2
1.4. Monitoring Plan Revision	2
2. Indicators and Metrics for Estuarine Waters	20
2.1. Indicator: Water Column Pathogens	3
2.1.1. Pathogens Metric: Enterococci Concentration	3
2.1.2. Pathogens Metric: Shellfish Closure Areas	3
2.2. Indicator: Phytoplankton	3
2.2.1. Phytoplankton Metric: Chlorophyll a Concentration	3
2.2.2. Phytoplankton Metric: Extent and Frequency of Algal Blooms	3:
2.2.3. Phytoplankton Metric: Cyanobacteria Density	3
2.2.4. Phytoplankton Metric: Algal Toxins	3
2.3. Indicator: Sediment Quality	4
2.3.1. Sediment Metric: Chemical Contaminant Index	4
2.3.2. Sediment Metric: Sediment Toxicity Index	4:
2.3.3. Sediment Metric: Sediment Moisture and Organic Contents	4
2.4. Indicator: Water Column Clarity	4.
2.4.1. Water-Clarity Metric: Attenuation of Photosynthetically Active Radiation (PAR)	4
2.4.2. Water-Clarity Metric: Secchi Depth/ Transparency	4:
2.4.3. Water-Clarity Metric: Turbidity	4:
2.4.4. Water-Clarity Metric: Colored Dissolved Organic Matter (CDOM)	4
2.5. Indicator: Water Column Physical-Chemical	4
2.5.1. Physical-Chemical Metric: Water Temperature	4
2.5.2. Physical-Chemical Metric: Salinity	4
2.5.3. Physical-Chemical Metric: Dissolved Oxygen (DO) Concentration	4

2.5.4. Physical-Chemical Metric: Hydrogen Ion (pH) Concentration	47
2.5.5. Physical-Chemical Metric: Nutrient (Nitrogen + Phosphorus + Carbon) Concentrations	48
2.5.6. Physical-Chemical Metric: Relative Sea Level	48
2.5.7. Physical-Chemical Metric: Acoustics	49
2.6. Indicator: Contaminant Chemistry	49
2.6.1. Contaminant Chemistry Metric: SVOC Concentrations	50
2.6.2. Contaminant Chemistry Metric: Plastic Waste Concentration	50
2.6.3 Contaminant Chemistry Metric: Dissolved Metals Concentration	51
2.6.4. Contaminant Chemistry Metric: PFAS Concentration	52
2.6.5. Contaminant Chemistry Metric: PPCPs Concentration	53
3. Monitoring Needs and Recommendations	54
3.1. Needs and Recommendations: Water Column Pathogens	54
3.1.1. Pathogens Metric: Enterococci Concentration	54
3.1.2. Pathogens Metric: Shellfish Closure Areas	55
3.2. Needs and Recommendations: Phytoplankton	55
3.2.1. Phytoplankton Metric: Chlorophyll a Concentration	55
3.2.2. Phytoplankton Metric: Extent and Frequency of Algal Blooms	55
3.2.3. Phytoplankton Metric: Cyanobacteria Density	55
3.2.4. Phytoplankton Metric: Algal Toxins	55
3.2.5. Phytoplankton Metric: Microsystin	56
3.3. Needs and Recommendations: Sediment Quality	56
3.3.1. Sediment Metric: Chemical Contaminant Index	56
3.3.2. Sediment Metric: Sediment Toxicity Index	56
3.3.3. Sediment Metric: Sediment Moisture and Organic Contents	56
3.4.1. Water-Clarity Metric: Attenuation of Photosynthetically Active Radiation (PAR)	56
3.4.2. Water-Clarity Metric: Secchi Depth	57
3.4.3. Water-Clarity Metric: Turbidity	57
3.4.4. Water-Clarity Metric: Colored Dissolved Organic Matter (CDOM)	57
3.5. Needs and Recommendations: Other Water Column Physical-Chemical	58
3.5.1. Physical-Chemical Metric: Water Temperature	58
3.5.2. Physical-Chemical Metric: Estuarine Salinity	58
3.5.3. Physical-Chemical Metric: Dissolved Oxygen (DO) Concentration	59

3.5.4	4. Physical-Chemical Metric: Hydrogen Ion (pH) Concentration	59
3.5.5	5. Physical-Chemical Metric: Nutrients (Nitrogen + Phosphorus + Carbon) Concentrations	59
3.5.6	6. Physical-Chemical Metric: Relative Sea Level	60
3.5.7	7. Physical-Chemical Metric: Acoustics	60
3.6 Nee	eds and Recommendations: Contaminant Chemistry	60
3.6.1	1. Contaminant Chemistry Metric: SVOCs Concentration	60
3.6.2	2. Contaminant Chemistry Metric: Plastic Waste Concentration	60
3.6.3	3. Contaminant Chemistry Metric: Dissolved Metals Concentration	60
3.6.4	4. Contaminant Chemistry Metric: PFAS Concentration	61
3.6.5	5. Contaminant Chemistry Metric: Pharmaceutical & Personal Care Products (PPCPs) Concentration	61
4. Res	earch Needs Related to Estuarine Waters	62
5. Dat	abase Management and Reporting	63
6. Stat	tement of Funding and Commitment	65
Definit	tions	66
Refere	ences Cited	68

			Temporal Scale (Grain & Extent)	Method	MAT Lead
	SAV Areal Extent by Cover Class	0.3 m-resolution census of targeted sub- region in annual rotation	Bi-seasonal (May and mid-Sept. to mid-Oct.) every 3-5 years	Aerial survey via digital mapping camera, four-band color Cover class interpretation, manual	SAV
Mesohaline to Polyhaline Waters:	SAV Maximum Depth Distribution	0.3 m-resolution census of targeted sub- region in annual rotation	Bi-seasonal (May and mid-Sept. to mid-Oct.) every 3-5 years	Aerial survey via digital mapping camera, four-band color Edge interpretation, manual	SAV
Bogue, Back, Core, Eastern Pamlico Sounds	SAV Species Presence	75-150 sites randomly assigned and spatially balanced, majority at targeted sub- region in annual rotation	Bi-seasonal (May and September), majority every 3-5 years, minority annually	Species identification during Braun- Blanquet survey	SAV
Sounds	SAV Relative Abundance	75-150 sites randomly assigned and spatially balanced, majority at targeted sub- region in annual rotation	Bi-seasonal (May and September), majority every 3-5 years, minority annually	Braun-Blanquet, 4 replicate quadrats per site	SAV
Oligohaline Waters: Neuse Estuary,	SAV Areal Extent by Cover Class	Five roughly equal segments of total shoreline for each sub-region, majority at targeted segment per sub-region in annual rotation	Seasonal (Months TBD), majority every 5 years, minority annually	Sonar at two shore-parallel isobaths (0.75 m and 1 m) plus shore-normal sonar transect(s) past SAV maximum depth	SAV
Pamlico Estuary, Western Pamlico	SAV Maximum Depth Distribution	Five roughly equal segments of total shoreline for each sub-region, majority at targeted segment per sub-region in annual rotation	Seasonal (Months TBD), majority every 5 years, minority annually	Determined from shore-normal sonar transect data	SAV
Sound, Albemarle Sound, Currituck	SAV Species Presence	75-150 sites randomly selected and spatially balanced, majority at targeted segments in annual rotation	Seasonal (Months TBD), majority every 5 years, minority annually	Species identification during Braun- Blanquet survey	SAV
Sound, Back Bay	SAV Relative Abundance	75-150 sites randomly selected and spatially balanced, majority at targeted segments in annual rotation	Seasonal (Months TBD), majority every 5 years, minority annually	Braun-Blanquet, 4 replicate quadrats per site, possible near- shore (< 0.5 m depth) UAV survey	SAV

2.2.8. Abiotic-Stressor Metric: Salinity

Rationale: Estuaries by definition are areas of maximum spatial and temporal variation in salinity regime. Given that salinity tolerances vary widely among SAV species, it should be of little surprise that the salinity regime is an important predictor variable in determining SAV community composition at waterscape scales⁶¹, as well as productivity and growth. Estuarine salinity is often classified into three zones: low (oligohaline), medium (mesohaline), and high (polyhaline). SAV communities within the three salinity zones can have different interannual dynamics and responses to stressors⁶², with oligohaline communities being especially sensitive to salinity changes on the order of a few parts per thousand (ppt).

There is a very good understanding of the spatial/quantitative characteristics of the salinity gradient in APES (Section 1.1). The knowledge gap is how temporal fluctuations in salinity alter this structure with respect to its influence on SAV. Stressors that influence the salinity regime include extreme freshwater inputs from droughts, tropical storms, flood control⁶³, and impervious land surfaces. Also, the introduction of salt from water treatment facilities with reverse osmosis technologies can affect local salinity. Relative sea-level rise affects the tidal prism and increases saltwater flow into the estuarine interior.

Status: While many APNEP partners monitor salinity (mesohaline and polyhaline) or conductivity (oligohaline) of estuarine waters, it remains to be determined whether the spatial and temporal resolution of their collective network is adequate to reflect shallow-water salinity in all sub-regions. Few partners monitor salinity continuously (Table 4).

Citizen Volunteering: Volunteers if provided with refractometers (approximately \$300 each) can monitor surface-water salinity, or with calibrated water quality meters or multi-parameter sondes.

3.2.8. Abiotic-Stressor Metric: Salinity

Assessment Points: Currently with limited information on SAV-salinity dynamics, it is challenging to identify assessment points for directions on monitoring sensitivity. The prospects should improve however, as we build a better understanding of species composition, distribution and relative abundance of SAV in low-salinity waters.

Needs and Recommendation: The need is to Intensify (spatially and temporally) salinity monitoring in low-salinity waters. Beginning in 2021, we recommend compiling and analyzing salinity databases to identify priority gaps, plus measurements taken during Tier-2 sampling events.

Monitoring Integration Continuum

- Independence: Knowledge of partners monitoring strategies
- Cooperation: Taking advantage of common geography, timing
- Collaboration: Opportunities to leverage partners' monitoring networks
- Integration: Working toward a common set of regional ecosystem objectives

