APNEP's Water Resources Monitoring & Assessment Review

Dean Carpenter Albemarle-Pamlico National Estuary Partnership

Water Resources Monitoring & Assessment 16 March 2022

Outside Today's Review

- APNEP mission
- APNEP implementation area
- Ecosystem-based management
- Six other APNEP resource monitoring & assessment teams
- APNEP indicator definition

APNEP Water Resources Monitoring & Assessment (2008-2010)

- Develop a monitoring strategy for Water Resources metrics within the APNEP region
- Metric-specific monitoring proposals
- Indicators to be featured in the 2012 APNEP Regional Ecosystem Assessment

APNEP's Ecosystem Health Goals

- A region where human communities are sustained by a functioning ecosystem
- A region where aquatic, wetland, and upland habitats support viable populations of native species
- A region where water quantity and quality maintain ecological integrity

Figure 2: APNEP's adaptive management cycle.

APNEP Deliverables 2022-2023

- Comprehensive Conservation & Management Plan (CCMP) 3.0
- Regional Ecosystem Assessment 2.0
- Integrated Monitoring Framework 1.0

Human Dimensions

Regional Ecosystem Model

cean

EPA Indicator Development for Estuaries

- Program Planning
- Conceptual Model Development
- Indicator Specification
- Monitoring Program Development
- Implementation
- Reassessment

APNEP Indicator Criteria

- Utilization: Address a key process or property, and answers (or makes an important contribution toward answering) an important question about conditions in the A-P region
- Objectivity: Developed and presented in an accurate, clear, complete, and unbiased manner
- Integrity: Underlying data should be characterized by sound collection methodologies and data management systems adequate to protect its integrity, and to comply with quality assurance procedures
- Availability: Data should be available and timely, or will likely be available in the future, to maintain the indicator's utility
- Representation: Trends should accurately represent the underlying trends in the target population

A-P Ambient Monitoring Program

- Precise goals and specific measures for monitoring policy effectiveness should be designed and tested at the time that a policy is implemented
- Status Quo: APNEP 2000 monitoring survey update

APNEP Monitoring Proposal

- Justification for indicator
- Goal of sampling/monitoring program
 - What the optimum sampling/monitoring program will achieve and why that is important
- Existing sampling/monitoring program
 - Objectives What the existing program is designed to measure.
 - Example: Conduct periodic aerial mapping to monitor dramatic change of SAV presence over 5-year increments in four of six APES regions
 - Methods
 - Costs
 - Data quality control (data quality objective)
 - Data analysis, statistical methods and hypotheses

APNEP Monitoring Proposal

• Enhanced sampling/monitoring program

- Objectives what the enhanced sampling/monitoring program is designed to measure.
 - Example: Estimate the areal distribution and abundance of SAV along the western shorelines of APES and be capable of detecting significant change in SAV distribution and abundance
- Methods
- Costs
- Data quality control (data quality objective)
- Data analysis, statistical methods and hypotheses
- Reference(s)
- Contact Person

Monitoring Integration Continuum

- Independence: Knowledge of partners monitoring strategies
- Cooperation: Taking advantage of common geography, timing
- Collaboration: Opportunities to leverage partners' monitoring networks
- Integration: Working toward a common set of regional ecosystem objectives

Step 6: Assess performance

- "Interim" regional ecosystem assessment (2012)
 - Select provisional indicators
 - Status & trends from 1995 to 2012
 - Heinz Center format
- Phase 2 assessment
 - Diagnosis
- Phase 3 assessment
 - Forecasting

Chapter 3 System-Wide

	Extent and Pattorn	
	Extent and Pattern	27
	Human Population (I. Crawford)	37
	(technical notes 198)	
	Extent of Land Cover Types (T. Crawford, S. Terziotti)	45
	(technical notes 200)	
	Chemical and Physical Characteristics	
	Ambient Air Temperature (D. Figurskey)	54
	(technical notes 203)	
	Storm Frequency and Intensity (D. Figurskey)	57
	(technical notes 205)	
	Ground-Level Ozone Concentration (R. Dennis)	62
	(technical notes 206)	
	Total Inorganic Nitrogen Deposition (R. Dennis)	67
	(technical notes 209)	
	Dissolved Metal Concentrations (L. Dubbs, M. Piehler)	73
	(technical notes 211)	
_	Dissolved Oxygen Concentration Violations (L. Dubbs, M. Piehler)	79
	(technical notes 213)	
	Chlorophyll-a Concentration Violations (L. Dubbs, M. Piehler)	85
	(technical notes 215)	
	Biological Components	
	Fish Populations: River Herring Abundance (D. Carpenter, W. Laney)	91
	(technical notes 217)	
	Fish Populations: American Shad Abundance (D. Carpenter, W. Laney)	104
	(technical notes 221)	
	Fish Populations: Sturgeon Abundance (D. Carpenter, W. Lanev, K. Rawls)	115
	(technical notes 224)	

16

Chapter 4	Coasts, Sounds, and Near-Marine	
	Extent of Submerged Aquatic Vegetation (D. Carpenter, J. Kenworthy, D. Field) (technical notes 228)	124
	Phragmites australis Extent (D. Carpenter, K. Havens)	129
	(technical notes 230)	
	Chemical and Physical Characteristics	
	Relative Sea Level (C. Zervas, L. Dubbs)	132
	(technical notes 233)	
	Ocean Shoreline Migration (H. Mitasova, M. Overton, R. Oliver, E. Hardin)	138
	(technical notes 235)	
	Estuarine Shoreline Migration (R. Corbett, J. Walsh, D. Eulie)	144
	(technical notes 237)	
	Estuarine Salinity Concentration (L. Dubbs)	151
	(technical notes 239)	
	Biological Components	
	Shellfish Closures (L. Dubbs, M. Piehler)	157
	(technical notes 240)	
	Unusual Fish Mortalities and Disease Events (W. Laney, L. Dubbs) (technical notes 241)	160

Chapter 5

Fresh Waters

Che	mical and Physical Characteristics	
	Streamflow (T. Spruill)	170
	(technical notes 248)	
	Point Source Discharges (T. Spruill)	175
4	(technical notes 250)	
	Riverine Transport of Nitrogen and Phosphorus (T. Spruill)	179
	(technical notes 254)	
	Suspended Sediment (T. Spruill)	187
	(technical notes 260)	

EXTENT AND PATTERN CHEMICAL AND PHYSICAL BIOLOGICAL COMPONENTS

ESTUARINE SALINITY CONCENTRATION Lindsay Dubbs³⁷

Why are Estuarine Salinity Concentrations Important?

Salinity can be highly spatially and temporally variable within estuarine systems because of riverine freshwater (0 ppt) and ocean saltwater (~35 ppt) influences. Bacteria, plants, and animals are adapted to specific ranges of salinity. Salinity across an estuarine system dictates the distribution of organisms, affects productivity, and influences the cycling of nutrients, metals, and toxins.

Changes in precipitation patterns and water table levels associated with climate change, and the demand for and use of freshwater, influence river flows and thus influence estuarine salinity. Sea level rise and changes in the number and locations of inlets can also cause changes in the salinity regime. Thus, climate change and an increasing human population within the Albemarle-Pamlico Region are expected to cause changes in the spatial and temporal patterns of salinity.

What Does This Indicator Report?

 Monthly mean salinity concentrations in the estuarine waters of Albemarle-Pamlico subregions (Figure 1) from 1980 to 2009.

What Do the Data Show?

The annual mean salinity concentrations in the Lower Chowan, Roanoke, and Tar and Middle Neuse sub-basins were less than 1 ppt over the 30-year record. Monthly mean salinity concentrations in the Lower Chowan (Fig. 2a), Lower Roanoke (Fig. 2b), Lower Tar (Fig. 2c) and Middle Neuse (Fig. 3a) sub-basins spanned slightly wider ranges (0-3 ppt, 0-4 ppt, 0-8 ppt, and 0-10 ppt, respectively). However, the monthly means remained relatively constant and increased slightly over the 30-year period. The increases were statistically significant ($\alpha = 0.10$) at all six Lower Chowan River stations, all three Lower Roanoke River stations, and one of three

Assessment Planning

"The greatest challenge in developing a largescale biogeographic assessment is the synthesis and subsequent analysis of spatial data collected at different scales for varied objectives."

Source: NOAA 2003, citing Gotway and Young 2002

Bioregional Assessment Questions

- What were historic ecological, social, and economic conditions, trends, and variability?
- What are current ecological, social, and economic conditions?
- What are trends and risks under current policies and management?
- What policy choices will achieve ecological sustainability consistent with social well-being?
- What are the implications of these choices?

Step 7: Manage adaptively

- Most difficult step?
- Senior management engagement
- Trigger levels in plan

CCMP's Four Questions

- What is a healthy Albemarle-Pamlico Estuarine System?
- What is the status of Albemarle-Pamlico Estuarine System?
- What are the biggest threats to Albemarle-Pamlico Estuarine System?

• What actions should be taken that will move us from where we are today to a healthier Albemarle-Pamlico Sounds by 2027?

Estuarine Water Quality Assessment Questions

- Are estuarine water quality conditions suitable to sustain the ecosystem services...
 - ... provided by SAV species?
 - ... associated with recreational activities (e.g., swimming, canoeing and kayaking)?
 - ... provided by estuarine fauna (e.g., fishing, clam and oyster harvest)?
 - ... provided by coastal wetlands (e.g., sediment loading)?
 - ...provided by coastal landscapes, including natural vegetation (e.g., coastal forests), wildlife (e.g., fish and bird habitat) and aesthetics (e.g., attractive viewpoints, estuarine debris)?

MONITORING PLAN FOR THE ALBEMARLE-PAMLICO ESTUARINE SYSTEM

Estuarine Monitoring: Submerged Aquatic Vegetation

> Version 1.0 March 2021

Prepared by Dean E. Carpenter, APNEP Timothy A. Ellis, APNEP W. Judson Kenworthy, NOAA (ret.) Jessie C. Jarvis, UNC-Wilmington

ACKNOWLEDGMENTS

The authors wish to recognize the following APNEP Submerged Aquatic Vegetation Team and Science & Technical Advisory Committee members who participated in a series of APNEP monitoring subcommittee meetings during Fall 2020, and whose consensus from their deliberations form the basis of SAV metrics and monitoring strategies outlined in this plan: Reide Corbett (ECU), James "Bo" Dame (Chowan University), Anne Deaton (NCDMF), Matthew Duval (NRCS), Donald Field (NOAA), Joel Fodrie (UNC-CH), Peter Kalla (USEPA), Casey Knight (NCDMF), Wilson Laney (USFWS ret.), Joseph Luczkovich (ECU), Michelle Moorman (USFWS), Brandon Puckett (NC-NERR). The authors also recognize the APNEP Management Conference and staff who provided valuable feedback on draft versions of this document.

Table of Contents

Preface	
Acronyms and Abbreviations	5
1. Background	7
1.1. Purpose of Monitoring Plan	7
1.2. Scope of Monitoring Plan	12
1.3. Conceptual Models	13
1.3.1. Conceptual Models from Literature	14
1.3.2. APES Model Components	23
1.4. Monitoring Plan Revision	23
2. Indicators and Metrics	25
2.1. SAV Metrics	25
2.1.1. SAV Metric: Areal Extent by Cover Class	26
2.1.2. SAV Metric: Maximum Depth Distribution	28
2.1.3. SAV Metric: Species Presence	29
2.1.4. SAV Metric: Relative Abundance	30
2.1.5. SAV Metric: Macroalgae Presence and Absence	30
2.2. Water Quality Metrics	31
2.2.1. Water-Clarity Metric: Attenuation of Photosynthetically Active Radiation (PAR)	39
2.2.2. Water-Clarity Metric: Secchi Depth	39
2.2.3. Water-Clarity Metric: Chlorophyll a	40
2.2.4. Water-Clarity Metric: Turbidity	41
2.2.5. Water-Clarity Metric: Colored Dissolved Organic Matter (CDOM)	41
2.2.6. Abiotic-Stressor Metric: Dissolved Inorganic Nitrogen (DIN) and Phosphorus (DIP), and To Concentrations	otal Nitrogen 42
2.2.7. Abiotic-Stressor Metric: Water Temperature	43
2.2.8. Abiotic-Stressor Metric: Salinity	44
2.2.9. Abiotic-Stressor Metric: Dissolved Oxygen (DO)	44
2.2.10. Abiotic Stressor Metric: Hydrogen Ion Concentration (pH)	45
3. Monitoring Needs and Recommendations	46
3.1. SAV Monitoring Recommendations	46

References Cited	64
Definitions	62
6. Statement of Funding and Commitment	61
5. Database Management and Reporting	59
4. Research Needs Related to SAV and Estuarine Water Quality	58
3.2.10. Abiotic-Stressor Metric: Hydrogen Ion Concentration (pH)	57
3.2.9. Abiotic-Stressor Metric: Dissolved Oxygen (DO)	56
3.2.8. Abiotic-Stressor Metric: Salinity	56
3.2.7. Abiotic-Stressor Metric: Water Temperature	56
3.2.6. Abiotic-Stressor Metric: Dissolved Inorganic Nitrogen (DIN) and Phosphorus (DIP), and Tota Concentrations	l Nitrogen 55
3.2.5. Water-Clarity Metric: Colored Dissolved Organic Matter (CDOM)	55
3.2.4. Water-Clarity Metric: Turbidity	55
3.2.3. Water-Clarity Metric: Chlorophyll a	54
3.2.2. Water-Clarity Metric: Secchi Depth	54
3.2.1. Water-Clarity Metric: Attenuation of Photosynthetically Active Radiation (PAR)	54
3.2. Water-Quality Monitoring Recommendations	54
3.1.5. SAV Metric: Macroalgae Presence and Absence	53
3.1.4. SAV Metric: Species Presence	53
3.1.3. SAV Metric: Relative Abundance	52
3.1.2. SAV Metric: Maximum Depth Distribution	51
3.1.1. SAV Metric: Areal Extent by Cover Class	50

Component	Metric	Spatial Scale (Grain & Extent)	Temporal Scale	Method	MAT
			(Grain & Extent)		Lead
	SAV Areal Extent by Cover Class	0.3 m-resolution census of targeted sub- region in annual rotation	Bi-seasonal (May and mid-Sept. to mid-Oct.) every 3-5 years	Aerial survey via digital mapping camera, four-band color Cover class interpretation, manual	SAV
Mesohaline to Polyhaline Waters:	SAV Maximum Depth Distribution	0.3 m-resolution census of targeted sub- region in annual rotation	Bi-seasonal (May and mid-Sept. to mid-Oct.) every 3-5 years	Aerial survey via digital mapping camera, four-band color Edge interpretation, manual	SAV
Waters: Bogue, Back, Core, Eastern Pamlico Sounds	SAV Species Presence	75-150 sites randomly assigned and spatially balanced, majority at targeted sub- region in annual rotation	Bi-seasonal (May and September), majority every 3-5 years, minority annually	Species identification during Braun- Blanquet survey	SAV
	SAV Relative Abundance	75-150 sites randomly assigned and spatially balanced, majority at targeted sub- region in annual rotation	Bi-seasonal (May and September), majority every 3-5 years, minority annually	Braun-Blanquet, 4 replicate quadrats per site	SAV
Oligohaline Waters: Neuse Estuary.	SAV Areal Extent by Cover Class	Five roughly equal segments of total shoreline for each sub-region, majority at targeted segment per sub-region in annual rotation	Seasonal (Months TBD), majority every 5 years, minority annually	Sonar at two shore-parallel isobaths (0.75 m and 1 m) plus shore-normal sonar transect(s) past SAV maximum depth	SAV
Pamlico Estuary, Western Pamlico	SAV Maximum Depth Distribution	Five roughly equal segments of total shoreline for each sub-region, majority at targeted segment per sub-region in annual rotation	Seasonal (Months TBD), majority every 5 years, minority annually	Determined from shore-normal sonar transect data	SAV
Sound, Albemarle Sound, Currituck	SAV Species Presence	75-150 sites randomly selected and spatially balanced, majority at targeted segments in annual rotation	Seasonal (Months TBD), majority every 5 years, minority annually	Species identification during Braun- Blanquet survey	SAV
Sound, Back Bay	SAV Relative Abundance	75-150 sites randomly selected and spatially balanced, majority at targeted segments in annual rotation	Seasonal (Months TBD), majority every 5 years, minority annually	Braun-Blanquet, 4 replicate quadrats per site, possible near- shore (< 0.5 m depth) UAV survey	SAV

Table 5. Summary of APNEP SAV monitoring elements. MAT = Monitoring and Assessment Team

2.2.8. Abiotic-Stressor Metric: Salinity

Rationale: Estuaries by definition are areas of maximum spatial and temporal variation in salinity regime. Given that salinity tolerances vary widely among SAV species, it should be of little surprise that the salinity regime is an important predictor variable in determining SAV community composition at waterscape scales⁶¹, as well as productivity and growth. Estuarine salinity is often classified into three zones: low (oligohaline), medium (mesohaline), and high (polyhaline). SAV communities within the three salinity zones can have different interannual dynamics and responses to stressors⁶², with oligohaline communities being especially sensitive to salinity changes on the order of a few parts per thousand (ppt).

There is a very good understanding of the spatial/quantitative characteristics of the salinity gradient in APES (Section 1.1). The knowledge gap is how temporal fluctuations in salinity alter this structure with respect to its influence on SAV. Stressors that influence the salinity regime include extreme freshwater inputs from droughts, tropical storms, flood control⁶³, and impervious land surfaces. Also, the introduction of salt from water treatment facilities with reverse osmosis technologies can affect local salinity. Relative sea-level rise affects the tidal prism and increases saltwater flow into the estuarine interior.

Status: While many APNEP partners monitor salinity (mesohaline and polyhaline) or conductivity (oligohaline) of estuarine waters, it remains to be determined whether the spatial and temporal resolution of their collective network is adequate to reflect shallow-water salinity in all sub-regions. Few partners monitor salinity continuously (Table 4).

Citizen Volunteering: Volunteers if provided with refractometers (approximately \$300 each) can monitor surface-water salinity, or with calibrated water quality meters or multi-parameter sondes.

3.2.8. Abiotic-Stressor Metric: Salinity

Assessment Points: Currently with limited information on SAV-salinity dynamics, it is challenging to identify assessment points for directions on monitoring sensitivity. The prospects should improve however, as we build a better understanding of species composition, distribution and relative abundance of SAV in low-salinity waters.

Needs and Recommendation: The need is to Intensify (spatially and temporally) salinity monitoring in low-salinity waters. Beginning in 2021, we recommend compiling and analyzing salinity databases to identify priority gaps, plus measurements taken during Tier-2 sampling events.

DRAFT

MONITORING PLAN FOR THE ALBEMARLE-PAMLICO ESTUARINE SYSTEM

Estuarine Monitoring: Water Resources

> Version 0.1 March 2022

Prepared by

Dean E. Carpenter, APNEP

Timothy A. Ellis, APNEP

ACKNOWLEDGMENTS

The authors wish to recognize the following APNEP Water Resources Monitoring & Assessment Team and Science & Technical Advisory Committee members who participated in a series of APNEP monitoring subcommittee meetings during [Month & Year TBD], and whose consensus from their deliberations form the basis of water resources metrics and monitoring strategies outlined in this plan: [Participants List]. The authors also recognize the APNEP Management Conference and staff who provided valuable feedback on draft versions of this document. Table 3. Module/Sub-Module/Indicator/Metric hierarchy addressed in this plan. * <u>= metrics</u> that were recommended for continuous long-term monitoring in APNEP's first (1989) baseline water quality monitoring plan. ^ = metrics also supporting the "Harmful Algal Blooms" indicator. @ = metric also supporting "Water Column Transparency".

odule/Sub-Module	Indicator	Metrics
	Water Column Food	Enterococcus concentration
	water Column Fecal	Total coliform
	Microbioto	Chlorophyll a ^@
	MICrobiota	Phytoplankton
		Extent & frequency of algal blooms
		Phytoplankton community
		composition: Cyanobacteria
	Harmful Algal Blooms	density + Dinoflagellates +
		Raphidophytes
		Algal toxins: Microcystin +
		Anatoxins + Cylindrospermospsin
	Organia Carbon	DOC
		POC
	Sediment Condition	Sediment contaminant chemistry
		Sediment toxicity
		Sediment moisture content
Aquatic/Estuarine		Sediment organic content
		Benthic community
	Webse Column Transmission	PAR attenuation
		Secchi depth/ transparency
	water Column Transparency	Turbidity
		CDOM
	Nutrionts	Dissolved nutrients: DIN + DIP
	Nutrients	Total nutrients: Total N + Total P
	Water Column Temperature	Water temperature*
	Water Column Salinity	Estuarine (water column) salinity*
	Dissolved Oxygen	Dissolved oxygen concentration**
	Water Column Alkalinity	Hydrogen ion concentration (pH)^
	Dissolved Metals	Dissolved metals concentration
	Water Column Emerging Contaminants	Plastics
		Pharmaceutical & personal care
		products (PPCPs)
	Relative Sea Level	Water level

Μ

EXTENT OF SUBMERGED AQUATIC VEGETATION

METRIC REPOR

Extent of Submerged Aquatic Vegetation High-Salinity Estuarine Waters Metric Report

Don Field ¹, Jud Kenworthy ¹, Dean Carpenter ²

INTRODUCTION

Why Is the Extent of Submerged Aquatic Vegetation Important Within the Albemarle-Pamlico Estuarine System?

Underwater vascular plants are key components of aquatic ecosystems. They play multiple roles in keeping Albemarle-Pamlico Estuarine System (APES) waters healthy by providing habitat, food, and shelter for aquatic life; absorbing and recycling nutrients and filtering sediment; and acting as a barometer of water quality (Thayer et al. 1984). More commonly called "submerged aquatic vegetation" (SAV), these plants enrich shallow aquatic environments around the world, providing sanctuaries for mollusks, crustaceans, and finfish as well as sustenance for waterfowl (Bergstrom et al. 2006). SAV includes marine, estuarine, and riverine vascular plants that are rooted in sediment (NCDEQ 2016) and is one of five types of aquatic plants in APES waters, the others being floating aquatic vegetation, emergent aquatic vegetation, micro- and macroalgae, and blue-greens (cyanobacteria) (Bergstrom et al. 2006). Because SAV are rooted in anaerobic sediments, they need to produce a large amount of oxygen to aerate the roots, and therefore have the highest light requirements of all aquatic plants (NCDEQ 2016). SAV can become stressed by eutrophication and other environmental conditions which impair water transparency and/or diminish the oxygen content of water and sediments. The plant's response to these factors enables them to be sensitive bio-indicators of environmental health (Biber et al. 2004).

While more than 500 species of SAV inhabit the world's rivers, lakes, estuaries, and oceans (Bergstrom et al. 2006), APES and its tidal tributaries are home to about 14 common species (NCDEQ 2016). High-salinity (10-30 ppt) species, commonly referred to as seagrass include a temperate species, eelgrass (*Zostera marina*), tropical species, shoalgrass (*Haladule wrightii*) and the <u>eurytolerant</u> species widgeongrass (*Buppig maritima*) and the co-occurrence of these three species is unique to North Carolina (NCDEQ 2016). Beds of SAV occur in North Carolina in subtidal water generally less than two meters deep, and occasionally in intertidal areas of sheltered estuarine and riverine waters where there is unconsolidated substrate (loose sediment), adequate light reaching the bottom, and moderate to negligible current velocities or

¹ NOAA National Centers for Coastal Ocean Science, APNEP Science & Technical Advisory Committee ² APNEP