Using Positive Interactions Between Bivalves and Seagrass as a Community Based Approach for Habitat Management

Abigail K. Poray, Michael F. Piehler and F. Joel Fodrie

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Positive Interactions

"Any direct or indirect interaction among two or more organisms that positively affects the growth or reproduction of one or more organisms without negatively affecting the other(s)." - Bertness and Leonard, 1997

Positive Interactions Between Bivalves and Seagrass

- Organic matter consumed by suspension feeding bivalves
 - Re-mineralized and available for plant growth

Positive Feedback Loop -Dame et al. 1985

Positive Interactions Between Bivalves and Seagrass

- Increase in nutrient availabilityIncrease light penetration
 - Increase grazers
 - Reduced epiphytic biomass
 - Reduce bivalve mortality

Experimental Hypothesis

Can Mercenaria mercenaria be utilized to enhance the condition of Zostera marina?

 As a potential tool for future restoration efforts in North Carolina. Mercenaria mercenaria

- 1978 2001
 - 24-83% Decline in Spawning Stocks
 - 65-72% Decline in Recruitment

- Peterson 2002

Zostera marina

- Increasing temperature constraints
 - 1985 2004 declines in biomass and shoot density - Micheli et al 2008

Previous Study, May 2011

 Significant increase in above ground biomass as a result of clam treatments in bare/sparse plots

Clam Deployment

15-20 mm seed clams

- ~160 clams•m⁻²
 - Deployed in May 2013
 - Water temps > 60° F

> 500,000 clams seeded a total of 0.7 acres

Monitoring

Clam

Plot

Control

Plot

Control

Clam Plot

115ft

- Percent Cover
- Line Point Intercept transects

Bare Substrate Halodule wrightii Zostera marina

3 4 5 6 7 8 9 10 - Point Intercept 11 12 transect 13 14 15 16 17 18 19 Plot Corner Marker

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Monitoring

Seagrass Mapping

- Percent Cover
- Line Point Intercept transects

July, 2013

Monitoring

- Sediment Nutrients
 - Inside grass patches and bare substrate
- Seagrass Nutrients

- Used a needle to make a scar in the seagrass shoot
- Collected 14 days after marking and measured the distance between leaf scars
- Seagrass Reproductive potential
 - Flowering shoots and Reproductive structures

Flowering Shoot

Reproductive Potential, May 2011

Flowering Effort (Reproductive shoots/total shoots)

Flowering effort is highest in the presence of clams

Reproductive Potential, May 2011

Ovules

 Suggestive trends indicating a greater reproductive effort with the clams Regular summer turnover in eelgrass biomass represents a substantial contribution of organic matter to estuarine sediments

- Regular summer turnover in eelgrass biomass represents a substantial contribution of organic matter to estuarine sediments
- However, indications of a clam-seagrass interaction suggest clam additions may be beneficial in areas where eelgrass is at a tipping point between persistence and collapse.

- Regular summer turnover in eelgrass biomass represents a substantial contribution of organic matter to estuarine sediments
- However, indications of a clam-seagrass interaction suggest clam additions may be beneficial in areas where eelgrass is at a tipping point between persistence and collapse.
 - Enhanced colonization = increased above ground biomass
 - Elevated growth rates
 - Evidence for enhanced reproductive potential

Sediment / Nutrient Capture

Funding and Support

Albemarle-Pamlico National Estuary Partnership

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

A Joel Fodrie UNC Institute of Marine Sciences

Mike Piehler UNC Institute of Marine Sciences Coastal Studies Institute

Bemarle - Pan

National Estuarine Research Reserve

North Carolina Coastal Federation

Technician Support

Laura Alexander, Corey Adams, Michelle Brodeur, Riley Brady, Alexia Pool, Sara Coleman, Grey Reading, John McCord, Danielle Abbey, Stacy Zhang, Ian Kroll, Matt Kenworthy

