Water Resources Data for Evaluating Coastal Plain Ecological Flows in the Albemarle-Pamlico Basin

Michael O'Driscoll, Visiting Assistant Professor of Water Resources, Duke University / Associate Professor, East Carolina University

Cait Skibiel, CRM Student, East Carolina University

Charlie Humphrey, Associate Professor, East Carolina University

Isabel Hillman and Oshin Paranjape, MEM Students, Duke University

Coley Hughes Cordeiro, APNEP

APNEP Coastal Ecological Flows Working Group

Outline

- Why is coastal ecological flow assessment needed?
- What data is out there for this effort?
- What are challenges/limitations based on the data availability?

Why is coastal ecological flow assessment needed?

- Flow alterations have been shown to affect fish and macroinvertebrates.
- Recent evidence suggests that groundwater inputs and low flows may be declining along many Coastal Plain rivers.
- Population and economic growth in the Coastal Plain (and Piedmont) suggest we will need more water in the future.
- Changes in climate, land use, and water use may affect streamflow and water quality.

Freshwater Biology (2010) 55, 194-205 doi:10.1111/j.1365-2427.2009.02272: Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows N. LEROY POFF* AND JULIE K. H. ZIMMERMAN* *Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, U.S.A. *The Nature Conservancy, Bethesda, MD, U.S.A. 50 Abundance Fish response (% change) ▲ Demographic Diversity 0 \square -50 -100-100-50 0 50 100 Flow magnitude (% change)

Freshwater Biology

Annual rings are thicker when water is plentiful, thinner when it is not. (R.D. Griffin/University of Arkansas Tree-Ring Laboratory).

Drought Cycles in Eastern North Carolina

From bald cypress tree rings from the Black River, NC-Stahle et al. (1988) reconstructed a ~1600 yr drought history

Drought cycles ~ 30 years

<u>NC Severe Drought Probability :</u> 56% /10 yr

PDSI- Palmer Drought Severity Index

Quantifying low flow conditions

7Q10 is a useful metric to characterize low flows. It is determined by statistical analysis of stream flow records, and represents the lowest stream flow average for seven consecutive days (in a given year) with a recurrence interval of ten years.

Low-flow conditions can lead to:

- reduced water supply
- deteriorated water quality
- diminished power generation
- disturbed riparian habitats

problems are likely to become more frequent under enhanced climate variability and increasing water demands.

Groundwater inputs are critical to low flow maintenance (baseflow=100% groundwater inputs)

Average vs 7Q10 low flows at Tar River - Falkland, NC

Recent USGS Low-Flow Characterization: Evidence that baseflow is declining in the NC Coastal Plain (pre-1998 vs pre-2011)

ALL Coastal Plain stream gauge sites that were evaluated showed recent declines in 7Q10 baseflow

Base modified from digital files of: U.S. Geological Survey, 1:100,000 scale

Example: Little River near Princeton, NC: 2.4 cfs to 0.95 cfs (decline of 60.4%)

Low flows are getting lower along many Coastal Plain Rivers

Suggests groundwater inputs to the stream are declining. Potential reasons may include:

- reductions in groundwater recharge
- shifting precipitation and/or evapotranspiration patterns
- effects of groundwater (GW) and surface water (SW) withdrawals
- interbasin transfers of water and/or wastewater

Population Growth and Water Use in The Coastal Plain

2010- CP water use ~ 1 billion gallons/d

Water use has generally increased with population increase.

From 1995-2000, a rapid increase in water use.

From 2005-2010, water use did not increase substantially.

Suggests economic, conservation, or other factors.

Data source: USGS

2035

Economic Conditions also Influence Coastal Plain Water Use

NC Gross Domestic Product (GDP) increased from 270 billion (1995) to 437 billion (2014) (US BEA 2016).

Coastal Plain freshwater use increased with GDP, suggesting a relationship between economic activities and water use.

If economic conditions continue to improve- should expect increased water use

Coastal Plain Counties: Heavy Reliance on Groundwater

• 54% of Coastal Plain Counties utilized groundwater for more than 1/2 of their supply.

 The total groundwater use from Coastal Plain counties is 62% (431 million gallons/day) of groundwater usage statewide (694 million gallons/day) (2010)

We're

Jumber

One

Due to reliance on groundwater in the Coastal Plain: potential for groundwater withdrawals to influence streamflow

Groundwater Pumping May Affect the Water Table and Streams

-can remove source of baseflow from streamflow

-over time can reverse stream-groundwater relationship

- may lead to declines in baseflow over time

What is the relative role of meteorological controls and water withdrawals on changes in low-flow statistics?

C Water table Unconfined aquifer Confining bed

River-Groundwater Interactions are Complex in the Coastal Plain

Conceptual hydrogeologic model of the Tar River, floodplain and adjacent uplands (Johnson 2007). Arrows indicate direction of groundwater flow. Stratigraphic interpretations are based on NC DENR well logs, cores and auger samples collected during this study, GPR data, and a conceptual model for the evolution of the Roanoke River developed by S.R. Riggs (East Carolina University, Greenville, NC, personal communication, 2007). Regional confining units inhibit the downward infiltration of water to deeper units, causing lateral flow atop the confining unit and towards the river channel. Coarse-grained channel and floodplain sediments, frequently located on the *north* side of the river, transmit larger quantities of groundwater than older (and lower permeability) Pleistocene through Cretaceous (typically marine) sediments on the *south* side of the river

Coastal Plain Streams – Groundwater Interactions

What data is available for ecological flow assessment?

• Coastal water data presentations from Feb. 2016 conference:

https://wrri.ncsu.edu/wrri-events/coastal-plain/

• For ecological flow data - there is some effort needed to acquire hydrological, meteorological, ecological, and water use data across various agencies with different objectives/regulations/ data formats, etc. WRRI Water Resources Research Institute of the UNC System

Mission Research Education Partnerships Events Publications Impacts News Contact Us ${\bf Q}$

Freshwater in the North Carolina Coastal Plain: Understanding and Preparing for 21st Century Challenges

Acenda @ (February 16, 2016)

 Understanding the Coastal Plain: Giving Context to Regional Challenges @ - David Genereux

 Research, Data and Resources in the Coastal Plain: What we know, What we don't know, and What we don't know that we don't know

 <u>Kristen McSwain</u>

 <u>Carn McNutt</u>

 <u>Amy Kewworth</u>

 <u>Amy Kewworth</u>

 <u>Steven Berkowitz</u>

 <u>Amy Kewworth</u>

 <u>Track A-Supply</u>

 <u>Track A-Supply</u>

 <u>Track A-Supply</u>

 <u>Understanding Ecological Flows in Coastal Plain and Associated impacts to Sources</u>
 <u>G</u>-Jay Holley

 <u>Understanding Ecological Flows in Coastal Plain Systems and Implications for Downstream Needs</u>

 <u>Developing and Ensuring Future Supplies and Considerations for Proper Planning</u>

 Transen

- Track B- Contaminant
- <u>Considerations for large and small utilities for addressing emerging contaminants from upstream sources</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems</u>
 <u>Discharges from leaking and failing infrastructure-Package plants, high rate infiltration systems and septic systems
 <u>Discharges from leaking and failing</u>
 <u>Discharges from leaking and failing</u>
 <u>Discharges from leaking</u>
 <u>Discharges from leaking</u>
 <u>Discharges from leaking</u>
 <u>Discharges from leaking</u>
 <u>Disch</u></u>
- > Track A- Demand
- Where is the water going? Accommodating needs and demands from diverse sectors and stakeholders D-Linwood Peele
- > Permitting the use, management and distribution of water: Implications and the limitations of permits 📴 Linwood Peele
- Infrastructure Challenges: How to fund and support current and future demand D- Seth Robertson
- > Track B- Treatment
- Aquifer storage and recovery 2 David Pyne
- > Centralized treatment options and challenges 2 Mike Richardson and Ben Kearns
- Decentralized Treatment Options and challenges 2 Charlie Humphrey

> The implications of issues with supply, demand, contaminants and treatment in the Coastal Plain- Mike Piehler

Data Needs:

To understand the magnitude and timing of flow alterations and ecological effects

Withdrawals DEQ NC Dept. of Agriculture and **Consumer Services** USGS Municipal and Industrial Dams and Wastewater Inputs impoundments DEQ US ACE NC DHHS DEMLR NPDES (EPA/DEQ) **Coastal Ecological** Flow Assessment Flow Alterations Impervious area and land use data **Population Change** USGS. **US** Census USDA, NC OSBM DEQ **Ecological Flow Climate Change** Relationships State Climate Office. Various journals, NOAA, Ameriflux DEQ, EPA, USGS

Data Needs:

To understand reference conditions and classify streams

E. Bean/M. Griffin

USGS Streamflow and Stage Monitoring Network

Minimal flow data available in zone of tidal influence

Map of where current USGS streamflow gages are in NC APNEP watersheds. Red gages indicate stage and discharge sites. Blue gages indicate stage only. Yellow stars indicate inland water quality data available. Black circles indicate water quality data available in the estuary.

Source data from DEQ and Nationalmap.gov

High hazard dams in red

Compiled/compiling publically available data:

- Surface Water Discharge Stage and Flood Recurrence Geomorphological, Soils, and Land Cover
- Meteorological
- Groundwater and Baseflow
- Water Use
- Flow Alteration/ Dams
- NDDES Discharges
- NPDES Discharges
- Water Quality
- Ecological Flow Relationships for
- Coastal Plain

Example: 7Q10 data

- 49 discharge stations in the Albemarle Pamlico Drainage
- USGS Streamstats calculated 7Q10
 - range from 0-83 cfs
- Median 7Q10 0.39 cfs ~250K gallons/d or 0.25 MGD

APNEP Main Spi	oreadsheet.xlsx 🔆 🖿	ons Heln Lasteditwas2 days ano										Comment	s 🔒 Share
a na t	100% - \$ % .000 123 -	- Times New 12 - B I S A	▼ ▲ ☎ ∞ - ダ - 쉬 - 노 - 홈 - ☷ - 표	-Σ-									~
A		B	с		D	E	F	G	н	1	J		ĸ
USGS station # (add a	a 0 in front of 7 digit Station Na	me	Lat		Long (-)	Horizonta	al Da County	Drainage A	rea Site Status and period of record (as of Curtis	r Years of Record 7	Day Los	v Flo Avg B?	seflow i % fore
	2084317 Black Swar	np near Batts Crossroads, NC	35°42'32"		77°05'53	NAD 27	Beaufort	1.	02 Discontinued: 1982	1 U	NK	UNK	UNK
	2084500 Herring Ru	n near Washington, NC	35°34'03"		77°01'09"	NAD 27	Beaufort	9.	59 Discontinued: 1950-80	30		0.65 UNK	
	2084903 Sevennile	Creek tributary at SR 1120 near Buckhorn, NC	35°19'26"		76°52'27"	NAD 83	Beaufort		26 Discontinued: 1950-2004	54 U	NK	UNK	UNK
	2091960 Creeping St	wamp near Calico, NC	35°25'42"		77°11'12"	NAD 27	Beaufort	9	9.8 Discontinued: 1971-77	6 U	NK		0.256 UNK
	2075160 Moon Cree	k near Yanceyville, NC	36°28'13"		79°23'05"	NAD 27	Caswell	3:	2.8 Discontinued: 1961-74; 1988-89	14		0.4 UNK	
	2091970 Creeping St	wamp near Vanceboro, NC	35°23'30"		77°13'46"	NAD 27	Craven		27 Discontinued: 1971-85	14		0 UNK	
	2091814 Neuse Rive	r near Fort Barnwell, NC		35,31389	-77.3027	NAD83	Craven	39	00 October 1, 1996-Sept. 30, 2003	10 U	NK		0.618
	2092000 Swift Creek	c near Vanceboro, NC	35°20'42"		77°11'45"	NAD 27	Craven	1	82 Discontinued: 1950-89	39		2.1	0.356
	2092020 Palmetto St	wamp near Vanceboro, NC	35°20'18"		77°10'16"	NAD 27	Craven		24 Discontinued: 1971-76	5 U	NK	UNK	
	209257120 W. P. Brice	Creek below SR 1101 near Riverdale, NC	34°58'09"		77°02'55"	NAD 27	Craven	1	2 Discontinued: 1986-91	5 U	NK		0.57 UNK
	2043410 Northwest I	River above Mouth near Movock, NC	36°30'44"		76°05'12"	NAD 83	Currituck	1	96 Tidally affectedDiscontinued: 2006-07	110	NK	UNK	UNK
	2043415 Tull Creek	at SR 1222 near Currituck, NC	36°29'47"		76°05'03"	NAD 83	Currituck		52 Tidally affectedDiscontinued: 2006-07	1.17	NK	UNK	UNK
	204343500 Intracoastal	Waterway at Coiniock NC	36°20'34"		75°57'15"	NAD 27	Currituck	UNK	IndeterminateTidally affectedDiscontinued: 196	1. 9 17	NK	UNK	UNK
	204342510 Currituck S	ound at Poplar Branch NC (CU1)	50 20 54	36 42876707	-75 966868	NAD83	Currituck	UNK	INK		NK	UNK	UNK
	204245010 Currituck S	ound at Poplar Branch, NC (CU2)		36 2972922	75 993520	NAD93	Currituck	UNK	UNK	11	NK	UNK	UNK
	204343610 Currituele S	aund at US 159 Near Daint Barbar NC		36.0060200	75 767060	NAD92	Currituels	UNIX	UNIX		NIV	UNIV	UNIK
	204247300 Currinder 5	cand at C5 156 Near Fond Harden, No		36 0913747	75 700720	NAD92	Currituals	UNK	UNK		NIV	UNIV	UNK
	204547470 Currituck So	und Near Point Harbor, NC	26208/20"	50.0812747	70954134	NAD 37	Duchan	UNK	Discretioned 1062 07	25.11	NIL	ONK	0.226
	2085220 Little Kiver	hear Orange Factory, NC	30 08 20		78 34 24	NAD 27	Durham	01	72 Discontinued, 1902-87	25 01	NK.	0	0.330
	2080000 Dial Creek n	ear Bahama, NC	30 10 30		78 31 24	NAD 27	Dumam	4.	25 Discontinued. 1925-71, 1989-91	40			0.340
	2087000 Neuse Rive	Carely at Durbane NC	30 02 34		78 44 39	NAD 27	Dulham		60 Discontinued, 1927-80	55 01	NE	UNIV	0.524
	209/243 Inita Fork	Creek at Durnam, NC	3573843		78-34 48	NAD 27	Durnam	1.	08 Discontinued: 1908-75	12	NK	OUNK	UNK
	208700780 Little Lick	Creek above Secondary Road 1814 near Oak Grove, NC	30,0011	26.102	/8*4/08	NAD 27	Durnam	10	10 L 1026	131		UUNK	0.000
	2085500 FLAT RIVE	EK AI BAHAMA, NU		30.182	-/8.8/	NAD85	Durnam	1	49 July 1923 to current	92		0.23	0.292
	2083039 ENO RIVE	R AT COLE MILL RD NR HUCKLEBERRY SPRING		30.03942	-/8.9/80	S NAD85	Durnam	UNK	UNK	0	AN	UNK	UNK
	2085070 ENO RIVE	R NEAR DURHAM, NC		36.072	-78.90	8 NAD83	Durham	1	41 August 1963 to current	51		0.85	0.331
	208524090 MOUNTAI	N CREEK AT SR1617 NR BAHAMA, NC		36.14959	-/8.8966	S NAD83	Durham	7.	97 October 1994 to current	23		0	0.206
	208675010 ELLERBE C	CREEK AT CLUB BOULEVARD AT DURHAM, NC		36.01939	-78.8947	8 NAD83	Durham	UNK	August 2008 to current	9 0	NK	UNK	UNK
	2086849 ELLERBE	CREEK NEAR GORMAN, NC		36.05931	-78.832	5 NAD83	Durham	2	.9 UNK	U	NK		0.309
	208700550 LITTLE LI	CK CREEK AT NC HWY 98 AT OAK GROVE, NC		35.98233	-78.824	5 NAD83	Durham	UNK	July 2008 to current	9 U	NK	UNK	UNK
	209722970 SANDY CH	REEK AT CORNWALLIS RD NEAR DURHAM, NC		35.98322	-78.956	8 NAD83	Durham	UNK	Aug 2008 to current	9 0	NK	UNK	UNK
	2097280 THIRD FO	RK CR AT WOODCROFT PARKWAY NR BLANDS, NC		35.92264	-78.9524	2 NAD83	Durham	UNK	Aug 2008 to current	9 U	NK	UNK	UNK
	2097314 NEW HOP	E CREEK NEAR BLANDS, NC		35.885	-78.96	5 NAD83	Durham	7:	0.9 October 1982 to current	35		5.3	0.299
	209741387 NORTHEA	ST CREEK TRIB AT SR1182 NR LOWES GROVE, NC		35.91539	-78.8935	2 NAD83	Durham	UNK	July 2008 to current	9 U	NK	UNK	UNK
	209741955 NORTHEA	ST CREEK AT SR1100 NR GENLEE, NC		35.872	-78.91	4 NAD83	Durham	UNK	UNK	U	NK	UNK	UNK
	208117948 Croatan So	und Near Manns Harbor		35.90683398	-75.768234	5 NAD83	Dare	UNK	UNK	U	NK	UNK	UNK
	208117990 Roanoke Sc	ound at US 64/264 at Headquarters Island		35.8987831	-75.615171	8 NAD83	Dare	UNK	UNK	U	NK	UNK	UNK
	2082610 Tar River n	ear Rocky Mount, NC	35°58'38"		77°45'35"	NAD 27	Edgecombe	9	30 Discontinued: 1971-73	2 U	NK	UNK	
	208378372 Conetoe Cr	eek at Conetoe, NC	35°48'30"		77°26'48"	NAD 27	Edgecombe	6:	5.4 Discontinued: 2002-03	1 U	NK	UNK	UNK
	2082585 TAR RIVE	R AT NC 97 AT ROCKY MOUNT, NC		35.95472	-77.7872	2 NAD83	Edgecombe	9	25 August 1976 to current	41		29	0.391
	2083000 FISHING C	CREEK NEAR ENFIELD, NC		36.151	-77.69	NAD83	Edgecombe	5	26 October 1923 to current	94		12	0.462
	2083500 TAR RIVE	R AT TARBORO, NC		35.894	-77.53	NAD83	Edgecombe	21	83 July1896 to December 1900; October 1931 to ct	r 90		83	0.475
	2082500 Sapony Cre	ek near Nashville, NC	36°03'14"		78°20'24"	NAD 27	Franklin	4	7.8 Discontinued: 1956-75	19		0.07 UNK	
	2082731 Devils Crad	ile Creek near Alert, NC	36°12'03"		78°14'19"	NAD 27	Franklin	13	4 Discontinued: 1993-97	4 U	NK	UNK	UNK
	208273070 Devils Crad	ile Creek at NC 39 near Keamey, NC	36°12'47"		78°17'49"	NAD 27	Franklin	2.	89 Discontinued: 1984-85	1 U	NK	UNK	UNK
	2081747 TAR R AT	US 401 AT LOUISBURG, NC		36.093	-78.29	7 NAD83	Franklin	4	27 October 1963 to current	54		6.7	0.348
	208705200 Smith Cree	k at Grissom, NC	36°05'18"		78°36'08"	NAD 27	Granville	6.	23 Discontinued: 1984-85	1 U	NK	UNK	UNK
	2001500 TAD DIVE	D NEAD TAD DIVED NO		26 105	70.50	374 000	Commille		67 Outshar 1020 to summer	70		0.16	0.230

What are limitations based on the data availability?

- Many USGS discharge stations have been decommissioned so > 30 year records to capture drought cycle are not available at many sites (18 sites out of 119)
- Spatial data gaps low order streams and tidal coastal streams are rarely monitored for discharge
- Generally speaking at land elevations below approximately 3 m above sea level, there is an absence of flow monitoring (due to tidal and wind issues)
- Difficulties delineating catchments with subtle elevation differences and extensive drainage alteration
- More information is also needed on groundwater inputs along Coastal Plain streams (magnitude, spatial and temporal variability, and source aquifer).
- Seepage runs (nested discharge measurements along a stream) during summer low-flow conditions would be helpful to help characterize the spatial variability in groundwater inputs.

Water Use Data in the Coastal Plain

Science for a changing world Maupin et al., 2014

Estimated Use of Water in the United States in 2010

- More challenging than dealing with discharge due to differences in reporting thresholds, when programs were implemented, and data availability
- Need to work with DEQ, USGS, and NCDACS
- Currently, comprehensive publically available water use estimates in NC are available every 5 years (since 1985) from USGS

Coastal Plain Counties- Water Use (USGS 2010 estimates)

- Dominant Coastal Plain freshwater uses for 2010 were public supply (312 MGD), industrial (225 MGD), and irrigation (162 MGD)
- Total use ~ 1 billion gallons/day (USGS, 2010).
- Public supply ~ 31% of water use
- If you categorize livestock, aquaculture, irrigation as agricultural use~34 % (agricultural-major use)

Water Use Data in the Coastal Plain

Thanks to Fred Tarver, Linwood Peele, and Nat Wilson at DEQ for helping to clarify!

Challenges Tracking Water Use in the Coastal Plain

• Reporting based on different rules that were put in place at various times and reporting thresholds may vary

• Generally speaking online data is not available before 1997 (paper data back to 1991)

• Comparisons of estimates across the different groups may not always be in agreement

• Example: Coastal Plain agricultural water use estimates for 2010 USGS estimate: 350 MGD vs. 21 MGD NC DACS.

	USGS 2010	NCDA&CS 2010			
County	Total(Mgal/day)	Total (Mgal/day)	Difference (Mgal/day)		
Bladen County	42.74	2.01	40.73		
Columbus County	12.59	0.00	12.59		
Duplin County	28.34	2.02	26.32		
Hoke County	21.72	0.00	21.72		
Johnston County	14.13	0.88	13.25		
Lenoir County	15.72	0.16	15.56		
Northampton County	18.32	0.28	18.04		
Onslow County	10.20	0.09	10.11		
Sampson County	31.23	3.07	28.16		
Wayne County	10.55	0.52	10.03		
Wilson County	14.16	0.00	14.16		

Coastal Plain counties where estimates from USGS and NCDA&CS differ by more than 10 million gallons per day (approximately 15 cubic feet/s) (Isabel Hillman)

Future work

- Complete report and database this year
- Virginia collaborate
- Potential pilot study- CCPCUA sub-watershed detailed water budget and water use study
- Ecological flow research in APNEP region flow and stage effects on fish and macroinvertebrates, salinity aspects
- River groundwater interactions in CP- effects of climate change and withdrawals on low flows

