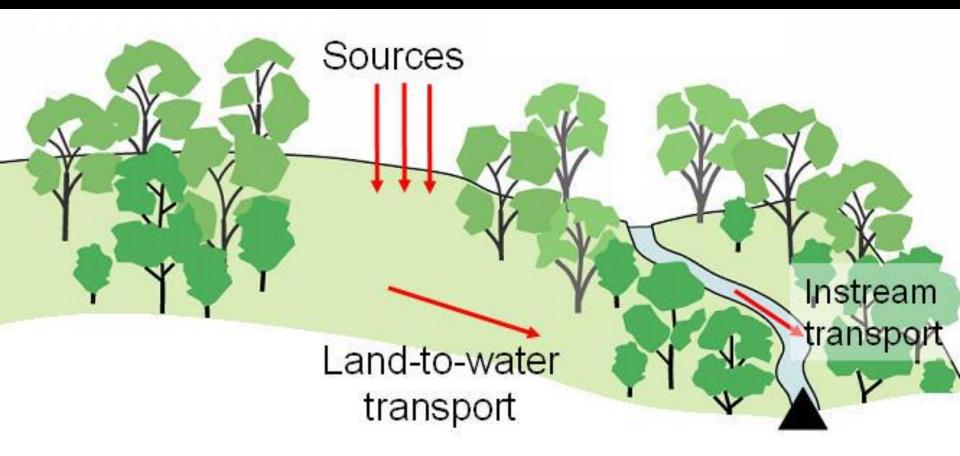


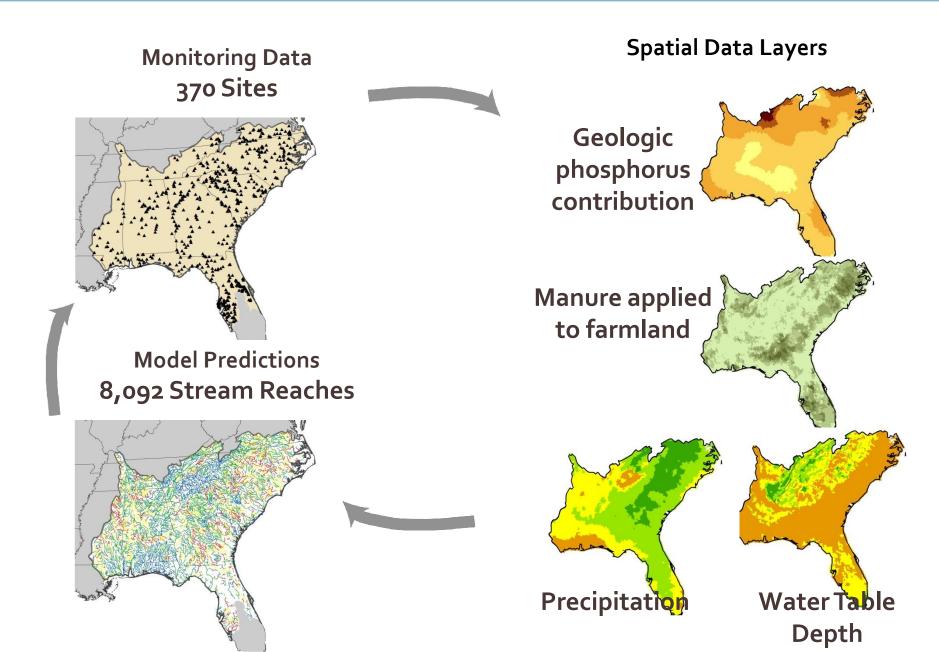
NATIONAL WATER QUALITY ASSESSMENT PROGRAM (NAWQA)


SPARROW models and Insights into How Wetlands Influence Nutrient Transport to Estuaries in the Southeastern U.S

Ana María García Anne Hoos, Silvia Terziotti

Presentation Overview

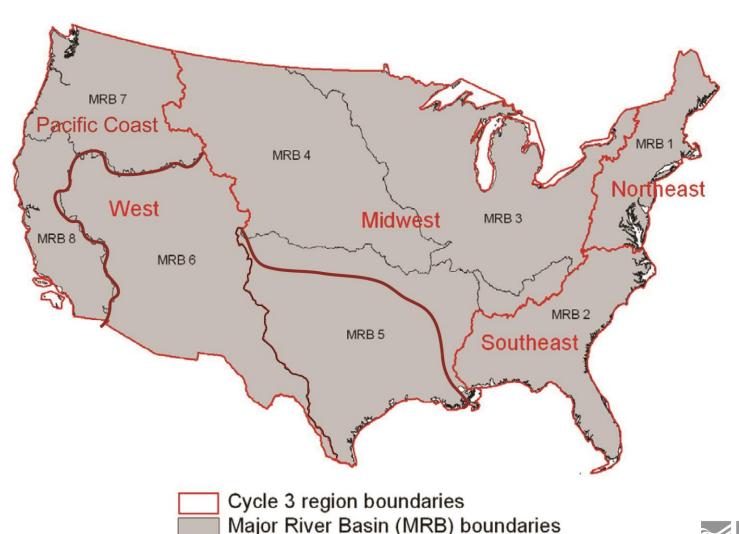
- Introduction to the <u>SPA</u>tially <u>Referenced</u> <u>Regression On Watershed attributes</u> (SPARROW) model
 - Updates on current Southeast SPARROW models
 - Preliminary results on wetland effects


SPARROW* Model Concept

Monitored load

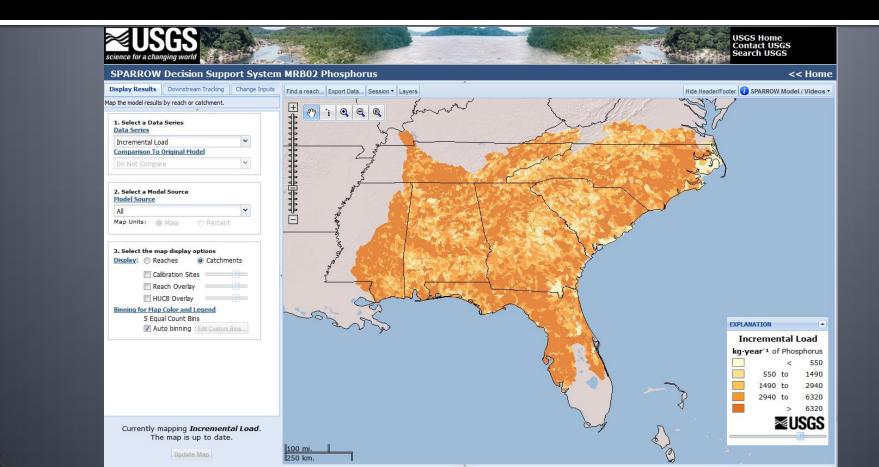
*<u>SPA</u>tially <u>Referenced Regression On Watershed Attributes</u>

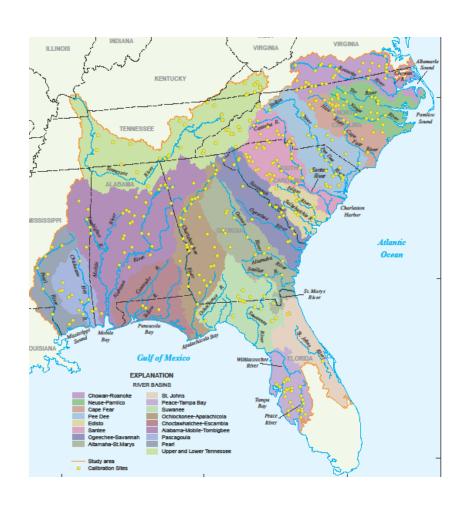
SPARROW Modeling Process



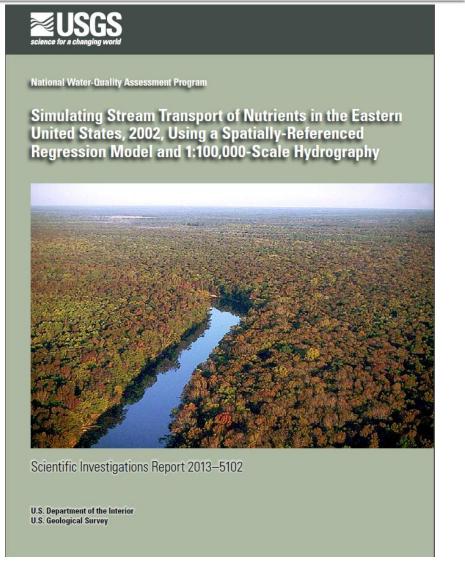
SPARROW and the National Water Quality Assessment Program (NAWQA)

- NAWQA provides an understanding of waterquality conditions and how those conditions may vary locally, regionally, and nationally
 - Cycle II NAWQA
 - SPARROW used to assess nutrient condition in 6 regions across the US for the base year 2002 – RF1 and NHD
 - Cycle III NAWQA
 - SPARROW used to assess nutrient condition for 5 regions, base year 2012
 NHD


NAWQA Cycle 3 SPARROW Modeling What should be the scope of our work?


Southeast SPARROW Model Online Decision Support System

http://cida.usgs.gov/sparrow/

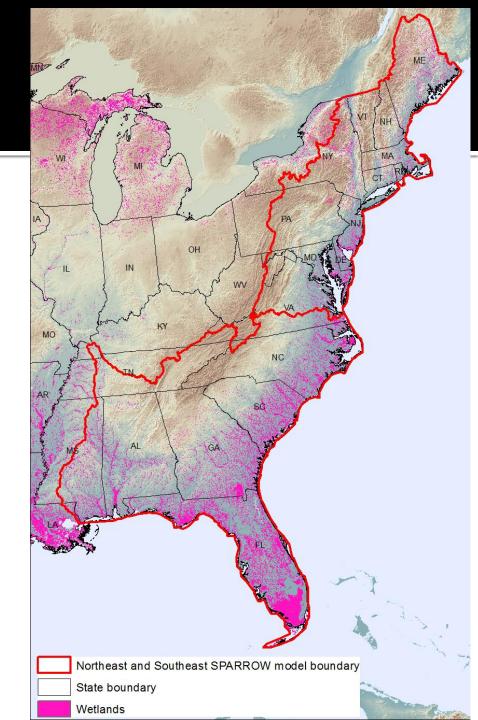

Southeast 2002 SPARROW model

- Alabama, Florida (partial), Georgia, Mississippi, North Carolina, South Carolina, and Tennessee have major river basins in the study area
- Published in 2009, 2011

East Coast SPARROW NHD, 2002

- Models for the northeastern and southeastern regions of the United States were recalibrated to achieve a hydrographically consistent model with which to
 - assess nutrient sources and stream transport and
 - investigate the effects of wetlands and
 - investigate the effects atmospheric deposition on nutrient transport.
- Update of SPARROW models to NHD network
- Data series and circular

East Coast SPARROW NHD, 2002

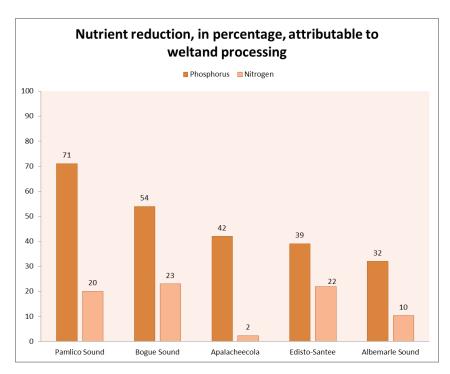

 Estimates of inputs for manure and fertilizer contribution via atmosphere pathway were included in the model using results of the Community Multi-Scale Air Quality (CMAQ) model (Dennis, 2010).

A. Nitrogen

Basin name	Basin area, based on NHDPlus network (km²)	Nitrogen yield (kg/km²/yr)	Standard error for nitrogen yield (kg/km²/yr)	Nitrogen source shares (percent of total)							
				Point sources	Urban land	Agricul- tural fertilizer	Manure from livestock	Emissions to atmosphere (and subsequent deposition)			
								Power plant	Other industry	Vehicle	Back- ground
Summary for northeast region	447,518	791	315	40.9	11.3	24.0/0.7	6.5/2.8	2.4	4.2	5.0	2.1
Basins draining to the St. Lawrence Seaway and the Gulf of Maine ^c	142,512	266	106	19.7	21.5	15.6/1.3	5.2/4.4	3.7	8.9	10.3	9.4
Basins draining to the Middle Atlantic ^d (Waquoit Bay to Maryland Coastal Bays)	134,470	1,389	564	61.0	10.6	13.9/0.5	2.5/1.6	1.5	3.2	3.9	1.2
Basins draining to Chesapeake Bay	170,536	759	304	18.2	9.2	41.0/0.8	12.6/4.0	3.4	4.4	5.1	1.3
Summary for southeast region	761,030	366	145	5.2	18.8	26.0/1.1	19.7/6.4	4.9	8.1	8.2	1.5
Basins draining to the South Atlantic (Albemarle Sound to Indian River)	332,904	260	103	6.9	18.7	29.6/0.9	17.5/7.0	4.3	6.4	7.4	1.2
Basins draining to the eastern Gulf of Mexico (Charlotte Harbor to Lake Borgne)	322,208	435	172	3.9	20.4	22.9/1.3	20.7/6.4	5.1	9.3	8.4	1.6
Tennessee River Basin	105,918	493	196	5.9	14.8	28.3/1.4	20.7/5.5	5.5	7.8	8.7	1.4

Incorporation of wetlands as explanatory variables

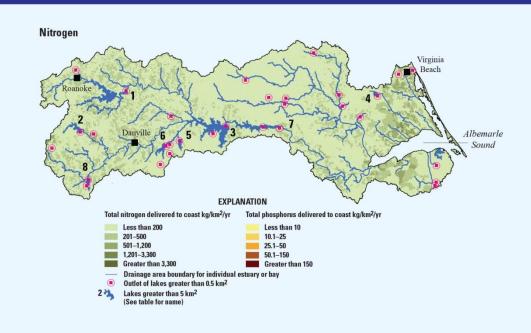
The effects of freshwater wetlands nutrient transport were modeled using spatial data sets of 29 wetland systems classified by plant community types. Each wetland system was further identified as riparian or nonriparian based on the respective presence or absence of hydrologic connectivity between the wetland system and streams or rivers.

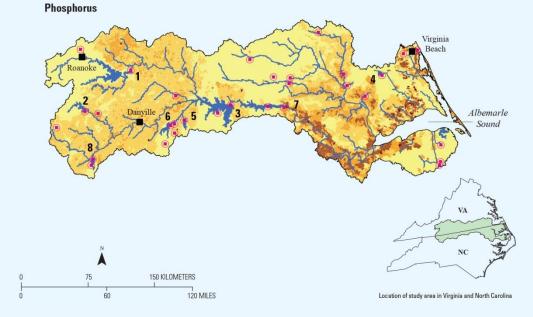

Two riparian wetland systems were associated with an attenuation of aqueousphase delivery of nitrogen and phosphorus. Both input variables Atlantic Coastal Plain Blackwater and Stream Floodplain Forest and Southern Piedmont Small Floodplain and Riparian Forest reduced stream nitrogen in the eastern United States and reduced stream phosphorus in the southeast.

Wetlands associated with instream removal of N

Northeast and Southeast SPARROW model boundary
Wetlands associated with instream attenuation
All wetlands
State boundary

Next steps





Next steps

 Dissemination of new predictions of nutrient yield and delivery

44. Contributing watersheds and nutrient yield for Albemarle Sound (Chowan and Roanoke River Basins)

NAWQA Cycle 3 SPARROW Modeling What are our goals / objectives?

Cycle 3 Issues of Concern (from Advisory Committee and NRC):

- 1. Contaminants we contribute minimally
- 2. Excess nutrients major contribution
- 3. Sediment potentially major contribution
- 4. Streamflow alteration potential contribution

NAWQA Cycle 3 SPARROW Modeling What should be the scope of our work?

Time Frame (Cycle 3 – 2013 to 2022):

- 1. Regional modeling 2013 through 2017
- 2. National modeling 2018 through 2020
- 3. Publication and Communication 2018 through 2022

