
Implementation of Ecosystem Based Management in APNEP

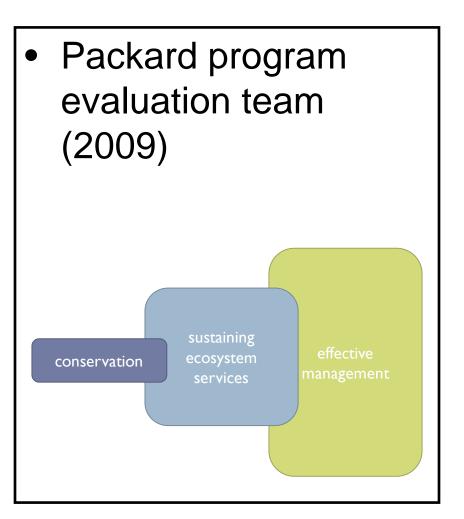
Carl Hershner, Dean Carpenter, Molly Roggero, and Kirk Havens

Virginia Institute of Marine Science

Albemarle-Pamlico National Estuary Program

Ecosystem Based Management

- place based
- focused on sustaining valued ecosystem services by protecting ecosystem structure and function,
- recognizes internal and external linkages of the whole system, and
- specifically considers economic, social and institutional aspects of the system


Essential conditions if an ecosystembased initiative is to succeed

United Nations Environment Program. 2006. *Ecosystem-based management: Markers for assessing progress.* 58pp. unep/gpa, The Hague

- 1. Unambiguous goals
- 2. Well-informed stakeholders
- Delegation of authority and financial resources to sustain implementation
- 4. Capacity within implementing institutions

Change in the Concept of EBM

NOAA Coastal Services Center (2007)**Ecological Perspectives** Ecosystem structure and function **ECOSYSTEM-BASED** MANAGEMENT Stakeholders' Laws and Mandates Issues Staff and Funding Socioeconomic Institutional **Perspectives Perspectives**

essential elements of EBM

holistic vision / plan

comprehensive description of system, articulation of multiple management objectives

community

effective engagement of policy makers, managers, stakeholders, scientists

process

effective adaptive management

foundation

National Estuary Programs

- place-based
- protect and restore water quality and ecological integrity of estuaries of national significance
- targeted actions in estuarine watershed
 - water quality
 - habitat
 - living resources challenges
- diverse stakeholder involvement

Ecosystem Based Management

- ✓ place based
- ✓ focused on sustaining valued ecosystem services by protecting ecosystem structure and function,
- recognizes internal and external linkages of the whole system, and
- specifically considers economic, social and institutional aspects of the system

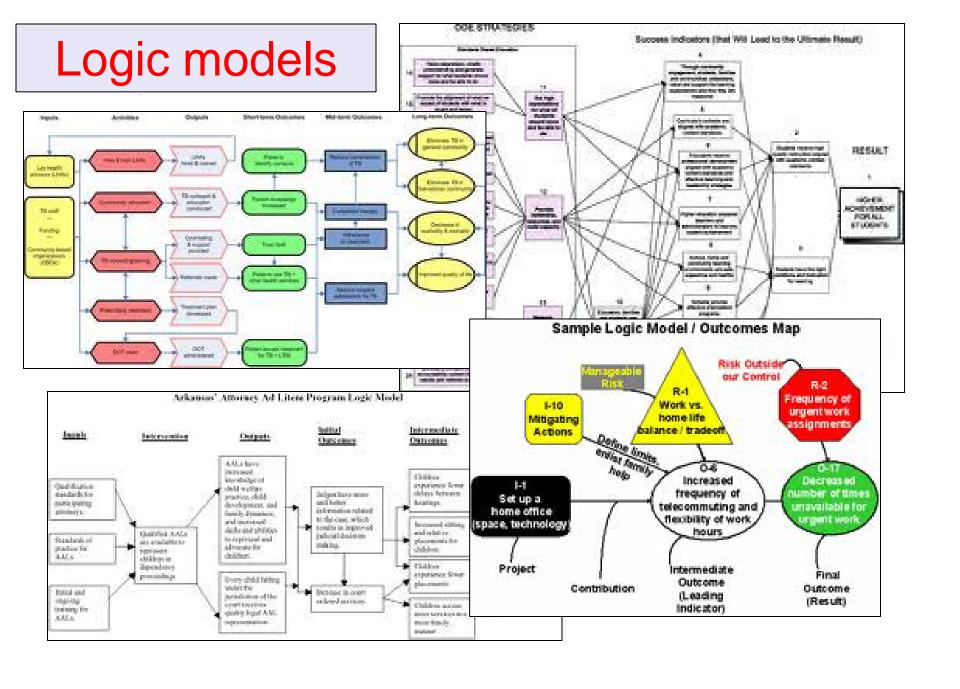
essential elements of EBM

holistic vision / plan

comprehensive description of system, articulation of multiple management objectives

community

effective engagement of policy makers, managers, stakeholders, scientists


process

effective adaptive management

foundation

program framework

- 1. Articulate program goals
- Develop system level model for goal attainment
- 3. Assess current management efforts identify gaps
- 4. Develop management strategy
- 5. Develop monitoring program
- 6. Assess performance
- 7. Manage adaptively

Goal modeling

identification of factors potentially affecting attainment

biological factors

- fauna
- flora
- Microorganisms

physical factors

- structure
- hydrology
- temperature

chemical factors

- salinity
- pH
- nutrients
- toxics

human factors

- use objectives
- modification of system
- knowledge

Protect and Re	store Vital Aquatic Habitats - SAV		
		importance	manageable
biological fact	ors		
fauna			
	predator prevalence	1	1
flora			
	physiological tolerance of plants	3	0
	propagation requirements	3	1
microorgs			
physical factor	'5		
structure			
	bathymetry	3	0
	sediment type	2	0
hydrology			
	hydrodynamic conditions	3	0
temperature			
	maxima duration/frequency	3	0
chemical facto	irs		
salinity			
	max-min duration/frequency	3	0
pН			
nutrients			
	N and P loads > eutrophication	3	2
toxics			
human factors			
use objective	es .		
	physical conflicts (competing uses)	2	3
modification	of system		
	eutrophication	3	2
	suspended sediment loads	2	1
	altered bathymetry	1	3
	shading	1	3
knowledge			
	technical understanding of bed dynamics	1	2
	public understanding of protection efforts	3	3
	policy understanding of need for protection	3	3
	policy understanding of need for habitat restoration	3	2

program framework

- 1. Articulate program goals
- Develop system level model for goal attainment
- 3. Assess current management efforts identify gaps
- 4. Develop management strategy
- 5. Develop monitoring program
- 6. Assess performance
- 7. Manage adaptively

essential elements of EBM

holistic vision / plan

comprehensive description of system, articulation of multiple management objectives

community

effective engagement of policy makers, managers, stakeholders, scientists

process

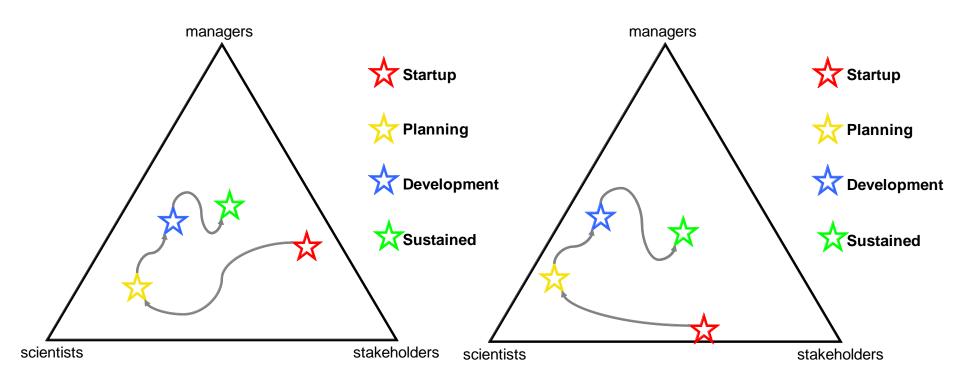
effective adaptive management

foundation

EBM - Stakeholder Collaboration

Optimistic model

- Trust transforms interests and leads to innovation
- Agreement on science basis leads to feasible, well-founded plan
- Involvement reduces challenges


Pessimistic model

- Consensus seeking leads to lowest common denominator
- Socio-economic interests dilute precaution
- Special interests resurface impeding implementation

Adapted from: Judith Layzer. 2008. Natural Experiments: Ecosystem-based management and the environment. The MIT Press. Cambridge, MA.

Pathway to sustained EBM

PANGAS SLOSEA

Source: PANGAS and SLOSEA Pis

essential elements of EBM

holistic vision / plan

comprehensive description of system, articulation of multiple management objectives

community

effective engagement of policy makers, managers, stakeholders, scientists

process

effective adaptive management

foundation

program framework

- 1. Articulate program goals
- Develop system level model for goal attainment
- 3. Assess current management efforts identify gaps
- 4. Develop management strategy
- 5. Develop monitoring program
- 6. Assess performance
- 7. Manage adaptively

Develop monitoring program

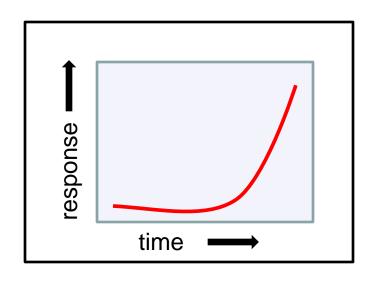
- reflect management priorities
- designed to reduce uncertainty in system model
- link condition and management efforts
- data is appropriate to decision thresholds for adaptive management

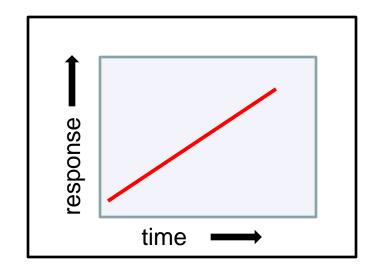
program framework

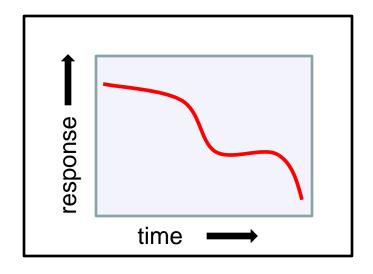
- 1. Articulate program goals
- Develop system level model for goal attainment
- 3. Assess current management efforts identify gaps
- 4. Develop management strategy
- 5. Develop monitoring program
- 6. Assess performance
- 7. Manage adaptively

EBM - Adaptive Management

Optimistic model

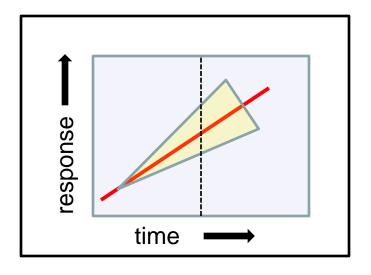

- Emphasis on flexibility promotes 'better-thanminimum' performance
- Monitoring informs practice ensuring use of best available understanding

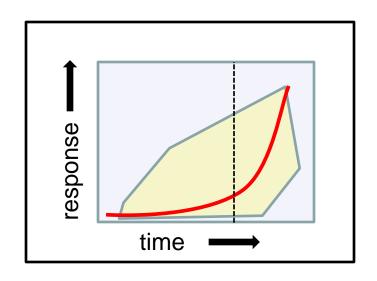

Pessimistic model

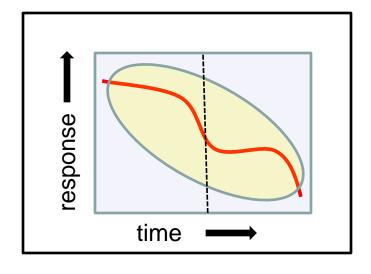

- Flexibility facilitates evasion by laggards
- Managers resist
 adjustments and
 development interests
 prevail

Adapted from: Judith Layzer. 2008. Natural Experiments: Ecosystem-based management and the envrionment. The MIT Press. Cambridge, MA.

Establishing performance expectations







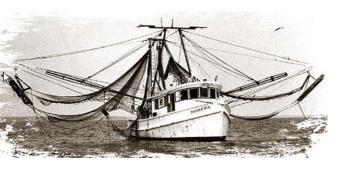
Establishing performance expectations

Identifying uncertainty

essential elements of EBM in APNEP

holistic vision / plan

comprehensive description of system, articulation of multiple management objectives


community

effective engagement of policy makers, managers, stakeholders, scientists

process

effective adaptive management

foundation

EBM advantages

- Goals clear and well understood
- Full ecosystem considerations
 - Human and natural system components
- Goal practicality vetted
- Coordination of existing programs
- Monitoring clearly linked to program goals
- Decision thresholds identified
- Iterative reductions in uncertainty

EBM advantages

- Goals clear and well understood
- Full ecosystem considerations
 - Human and natural system components
- Goal practicality vetted
- Coordination of existing programs
- Monitoring clearly linked to program goals
- Decision thresholds identified
- Iterative reductions in uncertainty

