

BUILDING A SCIENTIFIC FOUNDATION FOR SOUND ENVIRONMENTAL DECISIONS

Coastal Carolinas Environmental Decision Toolkit (EDT) Overview

Betsy Smith, Ph.D EPA National Exposure Laboratory Research Triangle Park, NC

U.S. Environmental Protection Agency Office of Research and Development **Toolkit creation and capabilities**

- Created as a Subset of Region 4 EDT
- Current Variables: People (33), Air (30), Water (13), Terrestrial (35), Multiple Categories (37)
- Static and Interactive Mapping
- Multi-variable integration
- Multiple perspectives on environmental conditions (endpoints, scales)
- Insight into current status and potential future problems

ReVA Environmental Decision Toolkit (EDT)

- Web-based toolkit
- Single variable views
- Multivariable views
- Relations between variables

- Integration of indicator variables
- Interoperability with other utilities
- Future scenarios and trade offs – coming soon

ReVA Process

Descriptive Spatial Data

(Landscape metrics, census variables, species counts, etc.)

Spatial Model Output

(NPS estimates, air deposition estimates, invasive species, etc.)

Forecast Scenarios:

Drivers of Ecological Change (land use, exotic species, resource extraction, pollution and pollutants, climate change) Alternative Management Scenarios (trade-off analyses)

Environmental Decision Toolkit

- Integration into Indices of Condition and Vulnerability
- Visualization from multiple perspectives
- Enabling Multiple Criteria Decision-Making
- Individual variables and Composite indices

Distribution Maps

Available in static, interactive or micro maps

Interactive Maps

Distribution displayed using Linked Micro Maps

- Display best and worst watersheds by variable
- Combine spatial and statistical views of variables

Nitrogen values

€EPA

0.0086	0.2048	%	AGTSL3	Total Agriculture (Pasture + Crop) on > 3% Slope			
0.9952	275.0000	Count	AMERI.ES	Total American Eskimo population			
0.6505	71075.6378	Hectares	PAD.HA	Total Area Protected Lands			
0.0000	0.0000	Hectares	NEIPAD.HA	Total Area Protected Lands within 10km of point source emitting > 1T			
0.9652	971.0000	Count	ASIAN	Total Asian population			
0.9417	45.0000	Count	HAWN.PI	Total Hawaiian population			
0.9731	1798.0000	Count	HISPANIC	Total Hispanic population			
0.1096	7.9118	kg/ha	TOT.NOX	Total NOx deposition (CMAQ)			
0.0000	1.3966	kg/ha/yr	N.LOAD	Total Nitrogen load to streams			
0.0000	0.2006	kg/ha/yr	P.LOAD	Total Phosphorus load to streams			
0.5364	11.8114	kg/ha	TOT.SOX	Total SOx deposition (CMAQ)			

- Watershed Variable Table
- Radar Plots shows all variables at once

€PA

Multiple Variable Integration

€PA

Creating an Index

Select variables and add subjective values

Examples:

- Water Quality
- Air Quality
- Human Health
- Management Priorities, e.g. BMP placement

Comparing Indices: two different assessments of water quality

Creating Reference Areas

- 3 Integration methods currently available
- Existing Watershed or Ideal Reference using available variables

Measures the multivariate distance between a reference watershed's suite of variables and the same suite of variables for other watersheds (top 5 or all).

- Sustainability or other goals can be used to define the reference: providing a report card on where individual watersheds stand
- Can be used to identify similar watersheds

Custom Stressor-Resource Overlays

Graphing Data

Set EPA

Useful for exploratory analysis

SEPA

Regional Growth Decision Tool

About the RGDT	How can I use the RGDT?	Use the RGDT	What is SEQL?	What is ReVA?
Home Page > Levels of Detail	> Executive Summary > SEOL Over	view Man		

Sustainable Environment for Quality of Life (SEQL) study: 15-county area surrounding Charlotte, NC. Two alternative futures projected to 2030

View Scenario Maps

Select Layers to Display:

County Lines

Cities State Boundary Interstate Roads << Back

Redraw Map

Variables

- · Percent any agricultural land
- Total agriculture land on steep slopes (9% slope)
- · Percent barren landcover natural
- · Percent forest landcover
- · Percent natural grass land cover
- · Percentage of land that is edge forest class
- Road density
- · Crop land cover along streams 60 meters
- · Forest land cover along streams 60 meters
- · Natural grass land cover along streams 60 meters
- · Percent shrub land cover
- Stream density
- · Percent urban landcover
- · Percent wetlands land cover

Print File

Internet

Advantages of CC-EDT

• Available now!

EPA

- Web tool provides universal access
- Powerful statistical engine integrates data "on the fly"
- Visualization allows data drilldown and assessment of spatial relationships
- User-defined weighting allows valuation for ecosystem services
- Integration can be done for any combination of variables
- New spatial integration methods adjust for correlations among variables
- Useful for researchers and decision makers

Coming Improvements

- Improved usability to address needs*
- *Mash-up* of EDT with ArcServe version for finer-scale analyses**
- Reorganization to reflect supply and demand (value) of ecosystem service metrics (ongoing interim products)
- Ability to change directionality of variables for integration (e.g. threatened and endangered species)
- Additional options for break points for mapped value ranges
- Additional data layers for Coastal Carolinas
- Finer scale geography (12D HUC's)
- Incorporation of future scenarios, trade off analysis
- New data categories (economic)
- Spatial analysis capabilities

EPA

***Top-level Management Questions**

- Assess existing regional condition and policy performance
- Create a Regional Ecosystem Health Scorecard
- Prioritize for Conservation
- Prioritize for Recovery Potential
- Identify regional Vulnerabilities
- Evaluate Current Ecosystem Services
- Evaluate trends through 2020
- Evaluate Opportunities for Action

EPA

**Mash-up of SPlus EDT with ArcServe

Thanks for your time!

Any Questions / Feedback

Smith.betsy@epa.gov

http://www.waratah.com/coastalcarolinas