Science to support management of the APPLS

Mike Piehler UNC-Chapel Hill Institute of Marine Sciences & UNC Coastal Studies Institute

Shallow Lake Limnology

- Less than 3 m deep
- Frequent Mixing
 - Resuspension
 - phosphorus
- High Primary Productivity
 - Macrophytes-Aquatic Plants
 - Algae

The tale of the tape ...

Lake	Average	Secchi	DOC	SUVA	Chlorophyll- a
	Depth	Depth	(mg/L)	(abs@254/	(ug/L)
	Sampled (m)	(m)		DOC)	
Phelps	1.5	1.5	1.5	0.009	1.19
Mattamuskeet					
East	1	1	14	0.015	17.3
West	1	0.4	18	0.022	36.4
Pungo	1	0.003	20	0.037	18.5

Lake Phelps

Lake Mattamuskeet

Pungo Lake

More tale of the tape ...

Nutrients					
Lake	N-NO _x	$N-NH_4$	P-PO ₄	TN	ON
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Phelps	0.03	7.98	1.3	36.68	28.66
Mattamuskeet					
East	1.46	12.88	4.71	761.5	747.17
West	7.04	28.13	2.3	993	957.83
Pungo	495.75	20.52	23.71	1097.5	581.23

Lake Phelps

Lake Mattamuskeet

Pungo Lake

Why Mattamuskeet first?

(a lesson in media relations)

"It's just big," said Piehler. "We were all sitting around the office one day looking at a map and said, 'Wow, that's a huge lake.' Also, it's a major fish and waterfowl habitat."

"Are understanding and incorporating ecological thresholds the key to successful environmental management, or are they an important and appealing conceptual way of looking at ecosystems with no real potential for practical application?"

Groffman and others 2006

Sampling Stations

Image © 2006 MDA EarthSat Image © 2006 DigitalGlobe

Pointer 35° 29'37.59"N 76° 11'21.92"W elev 0 ft

Streaming |||||||| 100%

Eye alt 16.30 mi

•2005 Google

First the phytoplankton

Tale of two lakes

Winter

20

0

Fall

I

Summer

T

Spring

What about the plants?

....and how stable is stable?

Macrophyte coverage in the 1990s

Green = Plants Red = No Plants

Potential drivers in change of ecosystem state

Nutrient addition bioassays

Bioassay design (4 replicates/treatment):

•West Side, East Side

Control Nitrogen (20uM NH₄⁺-N) Phosphorus (5uM PO₄⁺-P) Nitrogen+Phosphorus

•Data presented are for 2 day incubations

Spatial and temporal changes in phytoplankton nutrient limitation

Shallow Lakes Can Flip

Other contrasts East v. West

- Nutrient cycling
- Greenhouse gas fluxes
- Zooplankton

Important events in the history of Lake Mattamuskeet

- 1585: John White painted the lake
- 1850's: 1st canal dug
- 1915-1932: lake was drained and farmed
 - Southern 12,000 acres
- 1932: NWR
- 1942: Highway 94
- 1950's: removed carp and catfish
- 1985: replaced water control structures

Paleolimnology

- Sediment Record
- Proxies
 - Organic Matter (LOI)
 - Solid-Phase Elements
 - P, S, AL, Fe and others
 - Dating ²¹⁰Pb, ¹⁴C
 - Photosynthetic
 Pigments

sediment focusing

- Pigment Types
 - Chlorophylls
 - Chl-a and b
 - Carotenoids
 - Group specific

- Analysis

 -HPLC-photodiode array detector
 -Retention time and spectra

 Degradation

 -Light, oxygen, temperature
 - -Chlorophylls and pheopigments

Diatoms

Fucoxanthin Diatoxanthin

Cryptophytes

Cyanobacteria

Myxoxanthophyll Echineone Canthaxanthin Aphanozophyll

LOI and Phosphorus

Principal components P1 and P2 using all pigments except fuco. Sediment clusters (colors) determined by k-means cluster analysis

What do we know?

Before 1940 the entire lake was phytoplankton dominated
The east side shifted to plant dominance soon after 1940

Possible Mechanisms

- Nutrients
 - East-low P storage
 - West-high P storage

- Lake size and water depth
 - Fetch
 - 1850 water depth change
- Trophic Structure
 - Waterfowl
 - Fish and zooplankton

The APPLS landscape

Big changes underway...

Many to thank...

University of South Florida Matt Waters

UNC Coastal Studies Institute Corey Adams John McCord Mike Muglia

UNC-Chapel Hill

Tony Rodriquez Dina Leech Suzanne Thompson Martens Lab

Lake Mattamuskeet NWR Bruce Freske

