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SORTING OUT SEA LEVEL

What is sea level?
==/\Vhy does it change?
— 1t does the past tell us2- —
p 1 What’s happenlng now?

- Wh uture look like?:




What do we mean by sea level?

Sea surface

Eustatic
Local datum : sea-level Accumulated
sediment

Elevation of the sea surface

relative to some datum

Fixed datum e.g.
centre of
the Earth




Terminology (after Van Wagoner et al.)

Eustasy — sea level change as measured
relative to a fixed datum (e.g., the center of
the Earth).

Relative sea level — incorporates local factors
(e.g. vertical land motion); sea level relative to
a local datum (e.g. crystalline basement)
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CAUSES OF SEASLEVEICHAING
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Tectonism — local vertical land motion
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General Relative Sea-Level Equation

For each location (¢) the change in RSL (Arsl) at time 1 can be expressed
schematically as (Peltier et al. 2002; Shennan and Horton 2002):

Arsl(t,d) = Aeus(t) + Aiso(r,q;) + Atect(t,$) + Alocal(t,d)

Aeus(t) 1s the time-dependent eustatic function,

Aiso(t,0) 1s-the total 1sostatic effect of the glacial rebound process
including both.the 1 Ice (glacm 1sostat1c) and water (hydro isostatic) load
9contr1but10ns _ s ‘

Atect(t,0) is any tectonic effect and :

Alocal(t,$) is the total effect of local processes.-
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The panel shows model
predictions of the change
in global sea level if the
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Steric (density) contribution to SL change

(1950-2003)
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Contribution of terrestrial water storage and meteorological phenomena
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GRACE shows change in water
from March 2010 to March 2011
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Effect of slowing thermohaline circulation

Levermann et al.: Dynamic sea level changes following changes in the thermohaline circulation 351
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GLACIO-ISOSTATIC EFFECTS
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Figure 17-3
Earth’s Climate: Past and Future, Second Edition
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Figure 17-4b
Earth’s Climate: Past and Future, Second Edition
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Earth’s Climate: Past and Future, Second Edition
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GLACIO-ISOSTATIC AND
HYDRO-ISOSTATIC EFFECTS
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Figure 17-6
Earth’s Climate: Past and Future, Second Edition
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Figure 17-2
Earth’s Climate: Past and Future, Second Edition
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Forebulge collapse due to GIA
(ICE5G VM2 Model of Peltier, 2004)
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Figure 4. Mean sea level trends and 95% confidence intervals for North Carolina water level
stations with trends for Oregon Inlet Marina, Atlantic Beach, and Yaupon Beach based on water

level differences with Beaufort.
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Church et al. 2011. Geophy. Res. Let.

Table 1. The Sea-Level Budget”

Component 1972 — 2008 1993 — 2008
Total s.I. (t.g. only) 1.83 £ 0.18" 2.61 £ 0.55
Total s.I. (t.g. + sat) 2,10 £0.16 3.22 £ 041
Shallow thermal (0-700m) 0.63 = 0.09 0.71 = 0.31
Deep thermal ( 700-3000m) 0.07 £0.10 0.07 £ 0.10
Abyssal thermal (3000m-bottom) 0.10 = 0.06 0.10 = 0.06
Total thermal (full depth) 0.80 = 0.15 0.88 £ 033
Glaciers & Ice Caps 0.67 +0.03 0.99 + 0.04
Greenland Ice Sheet 0.12+0.17 0.31 £ 0.17
Antarctic Ice Sheet 030+ 0.20 0.43 =020
Land ice (G&IC, GIS, AIS) 1.09 £+ 0.26 1.73 = 0.27
Thermal (full depth) + Land ice 1.89 £ 0.30 2.61 £042
Dam retention —0.44 = 0.15 —0.30 = 0.15
Groundwater depletion 0.26 + 0.07 0.35 £ 0.07
Natural terrestrial storage 0.07 = 0.10 —0.14 + 0.10
Total terrestrial storage =0.11 £ 0.19 =0.08 = 0.19
Total mass contributions 0.98 = 0.33 1.66 = 0.33
Total thermal + Mass 1.78 £ 0.36 2.54 = 046
Residual (t.g. only) 0.05 = 0.40 0.08 = 0.72
Residual (t.g. + sat) 0.32 = 0.39 0.69 = 0.62

*Linear trends in mm yr ' (with one standard deviation error estimates)
are shown for the sea-level time series from the reconstructed tide-gauge
data (t.g.) and from joining the altimeter data to the reconstructed data in
1993 (t.g. + sat) and for each term in the sea-level budget for two
separate time intervals. Uncertainty estimates for the sea level, shallow
thermal expansion and the ground water depletion are from our analysis
and all other uncertainty estimates are from the relevant publications as
cited in the text.

"Bold numbers indicate sum of other rows, as indicated in first column.



The Geologic Record of ASL
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A. 500,000 years of sea-level change

Today thousand years before present
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The Geologic Record

Peat coring on a
Roanoke Island marsh



Salt marsh foraminiferal zonation
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Culver and Horton, 2005
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Climate related sea-level variations
over the past two millennia

Andrew C. Kemp®®, Benjamin P. Horton*', Jeffrey P Donnell
Martin Vermeer®, and Stefan Rahmstorf'
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Kemp et al., 2009 (Geology)

Tide Gauge Records
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The Historic Record

Measuring Sea Level using
Tide Gauge Stations

Figure 17-1
Earth’s Climate: Past and Future, Second Edition
© 2008 W.H.Freeman and Company



U.S. Sea Level Trends
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200 Cazaneva and Llovel, 2010. Ann. Rev. Mar. Sci. 2, 147-173

Tide gauge data
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Figure 1

Observed global mean sea level (from tide gauges) between 1900 and 2001. Red dots are from Church et al.
(2004). Blue dots are from Jevrejeva et al. (2006).
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Satellite altimetry
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Figure 2

Global mean sea level from satellite altimetry between January 1993 and December 2008. Annual cycle has
been removed. Blue dots are raw 10-day data. Red line corresponds to a 90-day smoothing of the raw data.
The —0.3 mm year—! GIA correction has been removed.



Spatial trends in sea level 1993-2008.
Data indicate global average rise of 3.4 £ 0.4 mm/y
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To forecast future SL changes
we must understand past

temperature and SL changes

Global average temperature change
adjusted for the urban heat island effect.
Diagram represents T anomaly relative to
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Figure 17-8
Earth’s Climate: Past and Future, Second Edition
© 2008 W.H.Freeman and Company
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OCEAN WARMING

Heat moves
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conduction,
molecular diffusion
and mass transport
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Figure 17-10
Earth’s Climate: Past and Future, Second Edition
© 2008 W.H.Freeman and Company
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Gravity Recovery and Climate Experiment

Geoscience Laser Altimetry System (GLAS)

Ice
thickness

Bedrock
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Data indicate Greenland is losing 20% more mass than it
receives in new snowfall each year

Greenland Mass Trend from GRACE
&,

()

GRACE Greenland Ice Loss

equivalent cm water per year



http://www.nasa.gov/centers/goddard/news/topstory/2006/greenland_slide.html




GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L07703, doi:10.1029/2010GL042947, 2010
How will sea level respond to changes in natural

and anthropogenic forcings by 2100? 15,

S. Jevrejeva,' J. C. Moore,” and A. Grinsted” The Future
Current rate of rise is ~3.2-3.4 mmly rmem———"
Has accelerated over the last century
from ~1.8 mmly. 1
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Sea level projections to AD2500 with a new generation of climate change scenarios

S. Jevrejeva **, |.C. Moore >“¢, A. Grinsted ©

15

Sea level (m)

0.5

Fig. 3. Sea level projections by 2100 with RCP scenarios; red— RCP3PD, blue— RCP45,
green— RCP6 and black — RCP8.5. Shadows with similar colour around sea level projec-
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tions are upper (95%) and low (5%) confidence levels.

Global and Planetary Change 80-81 (2012) 14-20
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Fig. 1. Radiative forcings for the RCP scenarios; red— RCP3FD, blue— RCP4.5, green—
RCPS and black — RCP8.5.

Table 3

Projected sea level rise {m) by 2100 for the RCP scenarios. Results presented as median,
upper (95% confidence interval) and lower (5% confidence interval) limits, calculated
from 2,000,000 model runs. Sea level rise is given relative the period 1980-2000. Re-
sults are give as average of the experiments named CBK_2003 [Crowley et al, 2003],
TBC_2006 [Tett et al, 2007] and GRT_2005 [Goosse et al., 2005].

RCP 5ea level rise (m)

scenarios - 502 957
RCP8S 0.81 1.10 1.65
RCPG 0.60 0.84 1.26
RCP45 0.52 074 1.10

RCP3PD 0.36 057 0.83




Testing the robustness of semi-empirical sea level projections

Clim Dyn

Stefan Rahmstorf - Mahe Perrette - DOI 10.1007/500382-011-1226.7

Martin Vermeer
Sea-level projections (RCP45)
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Fig. 8 Sea level hindcasts and projections driven by the temperature
scenario shown in Fig. 4 for ditferent models calibrated with different
temperature and sea level data. The error bars on the right indicate
90% confidence intervals (5-95 percentile, using the GISS temper-
ature dataset); for the proxy-based projection the uncertainty is as
presented in Kemp et al. (2011)
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Figure 1. Observed annual global temperature, unadjusted (pink)
and adjusted for short-term variations due to solar variability,
volcanoes and ENSO (red) as in Foster and Rahmstorf (2011).
12-months running averages are shown as well as linear trend lines,
and compared to the scenarios of the [IPCC (blue range and lines
from the third assessment, green from the fourth assessment report).
Projections are aligned in the graph so that they start (in 1990 and
2000, respectively) on the linear trend line of the (adjusted)
observational data.

Rahmstorf et al. 2012, Environmental Research Letters 7, 044035
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Figure 2. Sea level measured by satellite altimeter (red with linear
trend line; AVISO data from (Centre National d’Etudes Spatiales)
and reconstructed from tide gauges (orange, monthly data from
Church and White (2011)). Tide gauge data were aligned to give the
same mean during 1993-2010 as the altimeter data. The scenarios
of the IPCC are again shown in blue (third assessment) and green
(fourth assessment); the former have been published starting in the
year 1990 and the latter from 2000.

Rahmstorf et al. 2012, Environmental Research Letters 7, 044035



A new view on sea level r1se

STEFAN RAHMSTORF
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Figure 1 Range of rises. Estimates for twenty-first century sea level rise from semi-empirical models®®'** as
compared to the IPCC Fourth Assessment Report (AR4)". For exact definitions of the time periods and emissions
scenarios considered, see the original references.



But, Is it accelerating now?
Good question. Can’t say with any confidence, statistically.

Need another 5-10 years of data, depending upon how rapidly it
might be accelerating (the more rapid, the sooner we’ll know).
Regardless, it certainly has accelerated in the past (at ~0.01 mm/y?).
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DELFT3D MODEL

No bathymetric change (sed. accum. = ARSL);
2 m ave. shoal depth;
CLOSED through Croatan Sound
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