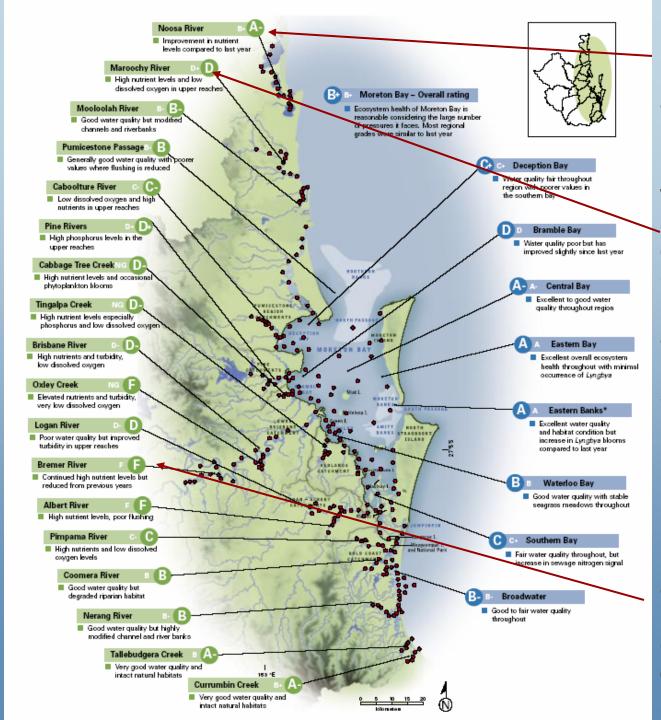

Producing the Chesapeake Bay (and Moreton Bay) ecosystem health report card

Ben Longstaff EcoCheck (NOAA/UMCES)

> Bill Dennison UMCES

Michael Williams UMCES

Overview


- The Moreton Bay experience (condensed!)
- Chesapeake Bay Report card
 - Background
 - Methods development
 - 2006 report card

Moreton Bay Report Card

- Grades all waterways from 'A' (Excellent) to 'F' (Fail)
- Annual release since 1999
- The most important tool for evaluating and communicating health of the regions waterways Directed / focused management action
- Impetus for some costly (but environmentally important) intervention

"A" rating used to promote the regions as a place to visit

Poorly operated treatment plant identified as cause of downgrading from a C to D. Treatment plant problems fixed and grade starts to improve in subsequent years

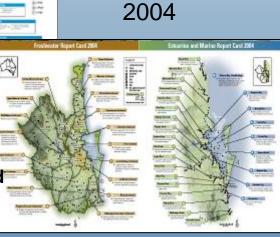
Report card highlights river health as worst in region. River becomes focus of major study and efforts to reduce pollution.

Ongoing program of improvement and expansion

2001

tion Bey Report Cord 200

- Grades based on expert assessment of data
- Focus on Bay region
- ~7 local governments


2002

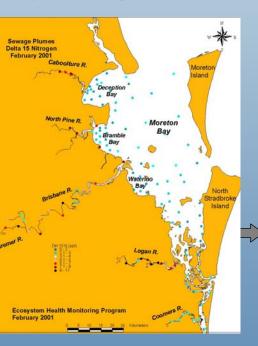
Ecosystem health

- Grading methods being developed
- Expand to northern region
- ~11 local governments
- 80% of grades based on index

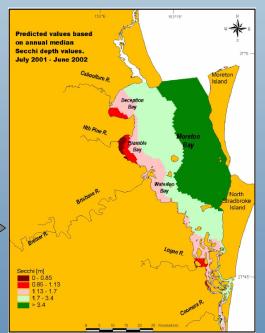
2003

- Expand to south
- 11 local governments

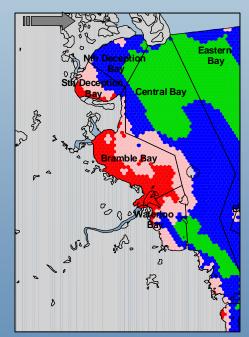
- 95 % of grades based on an index
- Expanded to watershed
- 20 local governments


SEQRWQMS water quality objectives

Performance	Performance	Bay Objective	Estuary Objective	Sample
Indicator	measure			frequency
δ¹⁵N (macroalgae)	Annual maximum	<4 ppt	NA	Annual
Chlorophyll-a	Annual median	<1 μg/L except Bramble, Waterloo,	<10 µg/L	Monthly
		Deception and southern		
		Moreton Bay <2 μg/L		
Total nitrogen	Annual median	< 0.22 mg/L or 15.7 μM	< 0.45 mg/L or 32.1 μM	Monthly
Total phosphorus	Annual median	NA	< 0.06 mg/L or 1.9 μM	Monthly
Dissolved oxygen	Annual median	NA	Between 80 to 100%	Monthly
Secchi	Annual median	> 1.7 m	NA	Monthly
Turbidity	Annual median	NA	<20 NTU	Monthly
Lyngbya	Annual maximum	<0 % cover	NA	Variable

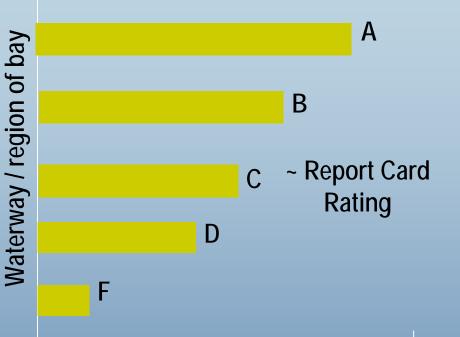

Ecosystem Health Index (80%)

Proportion of the waterways area that complies with the established objectives


Ecosystem health indicator (e.g. Secchi depth)

1 year of monthly monitoring data

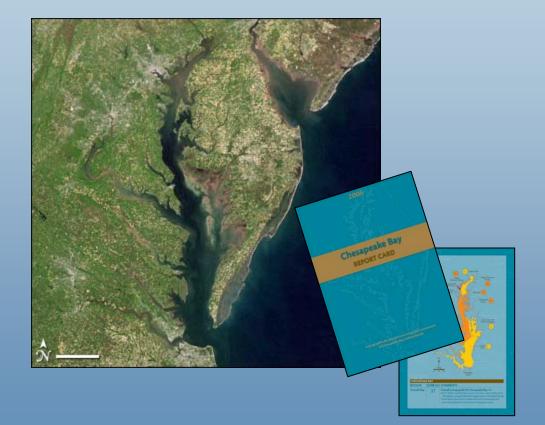
Median values calculated and spatial prediction between sites



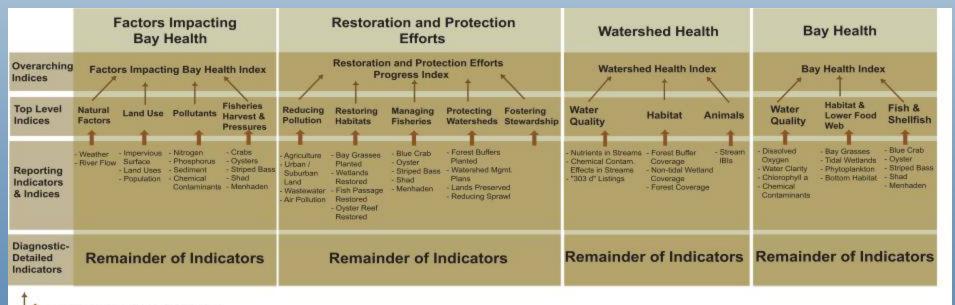
Compliance area calculated for each river or region of Moreton Bay

Process repeated for each indicator and average

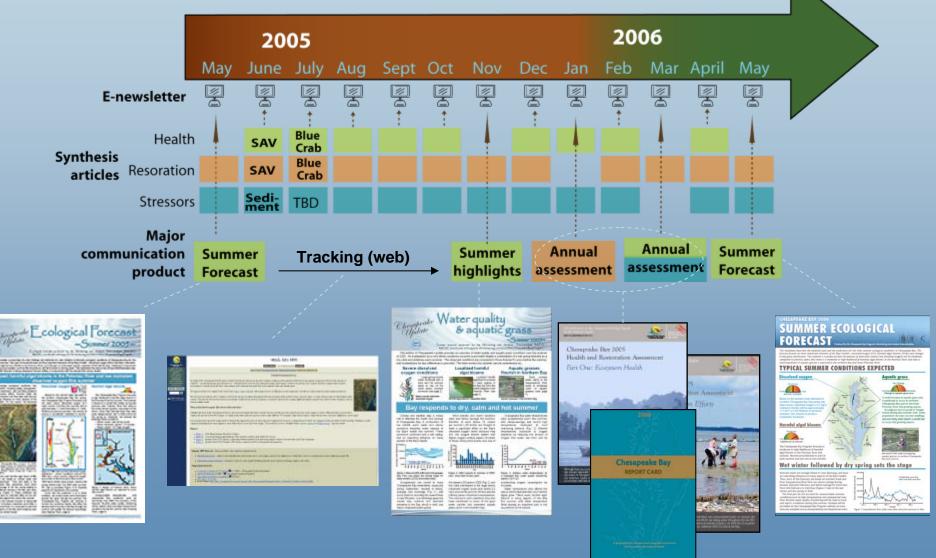
Report Card grades



~ Proportion of the waterway's area that complies with the established objectives

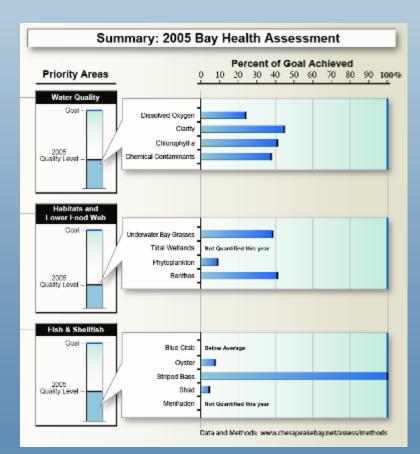

Estuary	EHI	Chl_a	ΤN	DO	TP	Turbidity
Logan River	0.42	1.00	0.25	0.36	0.15	0.40
Maroochy River	0.54	0.79	0.45	0.40	0.31	0.88

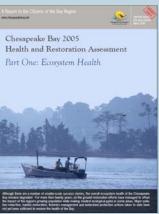
Chesapeake Bay Report Card


Developed a framework that:

- 1. Separates: Bay health, Bay stressors, restoration effort
- 2. Provides a logical hierarchy
- 3. Is closely aligned with the Bay Program's overall communication strategy

= direct numerical relationship

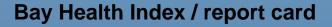

Developed annual communication cycle



Chesapeake Bay 2005: Ecosystem Health Report

Resolves many issues:

- Fewer indicators
- Improved structure
- Improved timeliness
- Simple and consistent
- Defines health as passing or failing guidelines
- Starts to provide indices





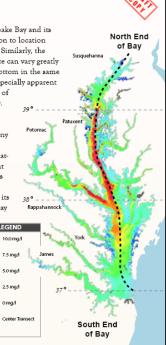
Chesapeake Bay Health and Restoration Report: Part 1: Ecosystem Health

Some remaining challenges:

- Some indicators not developed
- Some indicators still not timely
- Better integration: **Provide spatial detail**
 - Provide overarching indices

Water Quality

Water quality in the Chesapeake Bay and its tidal rivers varies from location to location across its 4,479 square-miles. Similarly, the quality of waters at the surface can vary greatly from those found near the bottom in the same area. These differences are especially apparent when scientists analyze levels of dissolved oxygen in the water.


7.5 mg/l

5.0 ma/

2.5 mg/ 0 ma/l

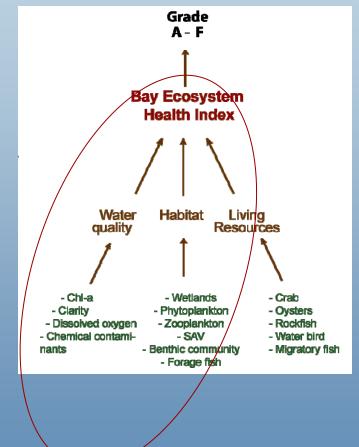
Throughout summer 2005, dissolved oxygen levels in many parts of the Bay were insufficient to support resident aquatic life. As the map to the right shows, dissolved oxygen levels were poorest along the midchannel areas of the Bay and its rivers, especially in the mid-bay

area. Each summer, scientists notice that these same areas tend to contain the lowest oxygen levels and 2005 was no exception.

Approach

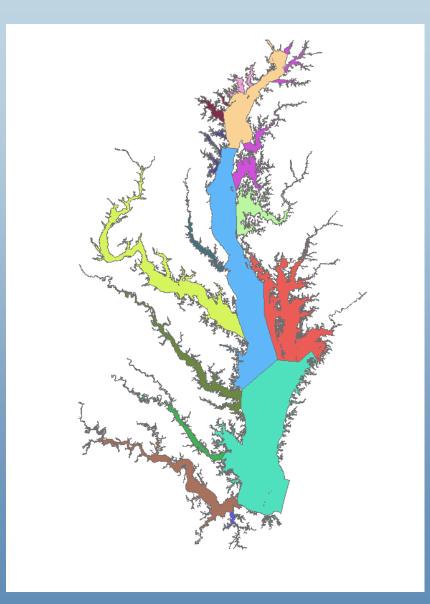
Reporting progress towards established thresholds:

- Capitalizes on effort taken to develop thresholds
- Provides consistency → defendable and simple index values
- Linked to management objectives

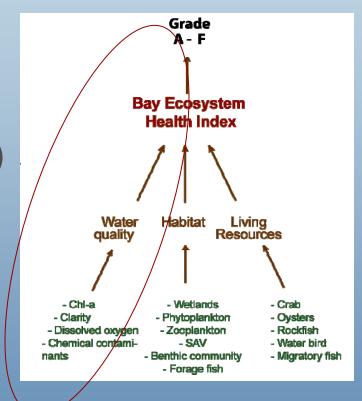

	COSYSTEM HEALTH		
Achieve and maintain the water quality necessary to support the aquatic living resources of the Bay and its tributaries and protect human health.	 Ch crophyl-α Dissolved oxygen Water clarity 	 4 15 μg L 460 0.0 - 5.0 mg L ⁴⁹⁷ 0.2 - 1.9 m ⁴⁴⁷ 	Proportion of that pass reference values
Preserve, protect and restore those habitats and natural areas that are vital to the survival and diversity of the living resources of the Bay and its tributaries. ¹	Aquatic grass Aquatic grass Bottom dwellers (Berthk-ISI) Microalgae (Phytoplanktor - BI)	Area (acres) ¹ 11명) 21명) 21명)	Proportion of that pass reference values

"Value sugar dention location and times"" Value sugar dention aum type diseptit, "" intermise lug (number) - vector ave for decomen at an offerer so-

Methods - indicators


• Indicators for 2006

- Water Quality Index
 - Chl-a,
 - Dissolved oxygen
 - Secchi disc depth
- Biotic Index
 - SAV
 - Benthic index of biological integrity (BIBI)
 - Phytoplankton index of biological integrity (PIBI)
- Other indicators will be included in the future (e.g. toxics, fish, shellfish)


Agreed to reporting regions

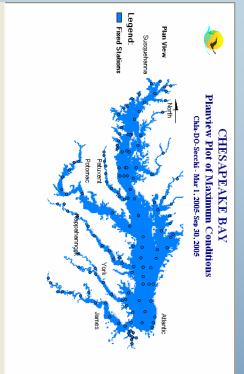
Reporting regions are aligned with Tributary Strategy regions

Calculating the WQI

- Establishing water quality thresholds:
 - Variety explored (esp Chl a)
 - Needed to be sensitive
 - Comparable ("apples to apples")
 - Used published values

WQI Thresholds

Chl-a Salinity Regime	Chl-a Season	Chl-a Reference Community Thresholds (µg L ⁻¹)*	Secchi Depth Salinity Regime	Secchi Depth Season	Secchi Relative Status Thresholds (m)*	DO Designated Use	DO Season	DO Criteria Thresholds (mg L ⁻¹) [‡]
Tidal Fresh	Spring	≤14.0	Tidal Fresh	Apr- Oct	≥0.85	Open Water	Jun- Sept	≥5.0
Oligohaline	Spring	≤20.9	Oligohaline	Apr- Oct	≥0.65	Deep Water	Jun- Sept	≥3.0
Mesohaline	Spring	≤6.2	Mesohaline	Apr- Oct	≥1.63	Deep Channel	Jun- Sept	≥1.0
Polyhaline	Spring	≤2.8	Polyhaline	Mar- Nov	≥2.0			
Tidal Fresh	Summer	≤12.0						
Oligohaline	Summer	≤9.5						
Mesohaline	Summer	≤7.7						
Polyhaline	Summer	≤4.5						

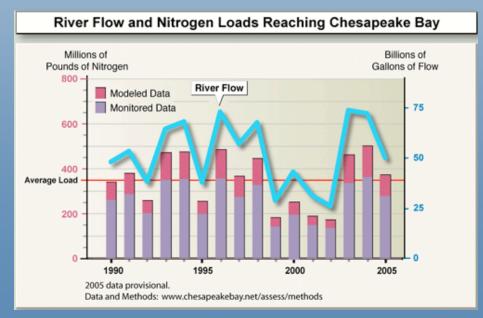

* Lacouture et al., Estuaries and Coasts (2006) & Buchanan et al., Estuaries (2005);

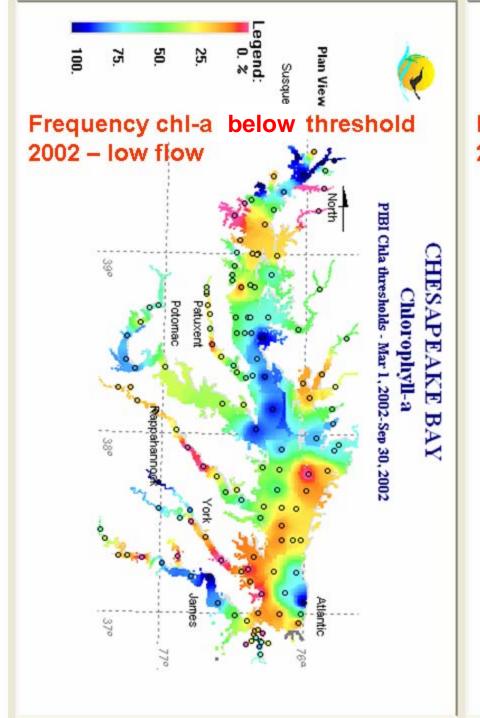
[‡]U. S. Environmental Protection Agency (2003)

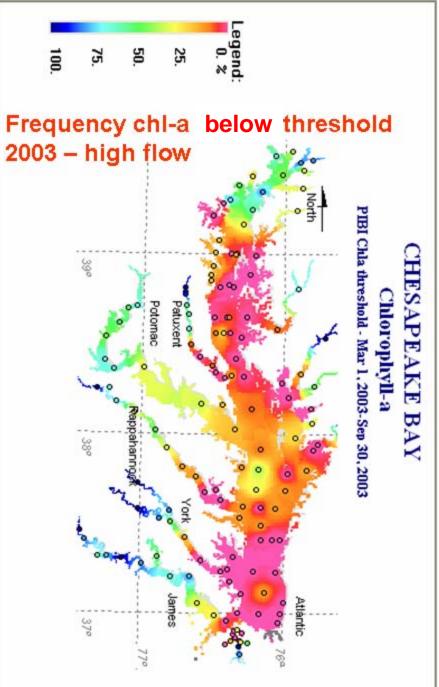
Calculating the WQI

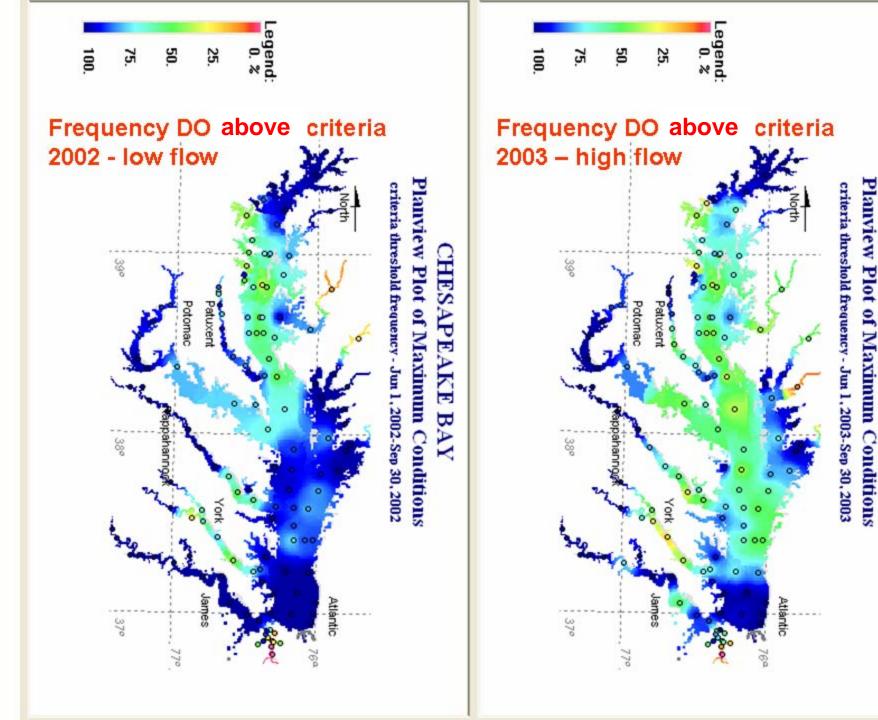
Metric score (% of threshold):

- -Variety of approaches investigated:
 - Pass/fail annual average
 - Site specific and by segment
- -Approach adopted:

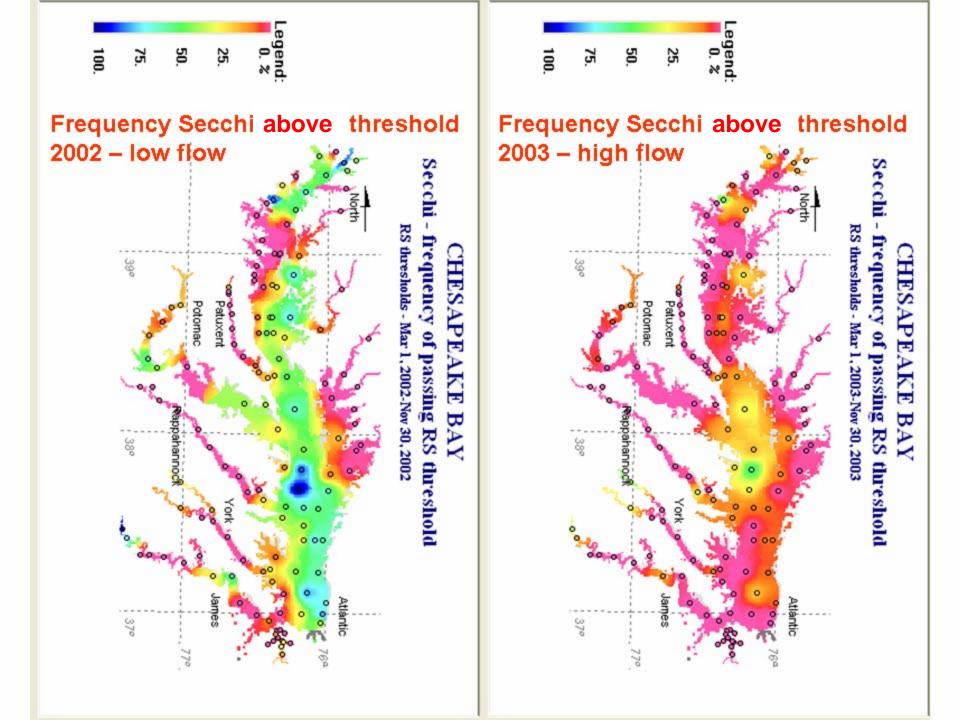


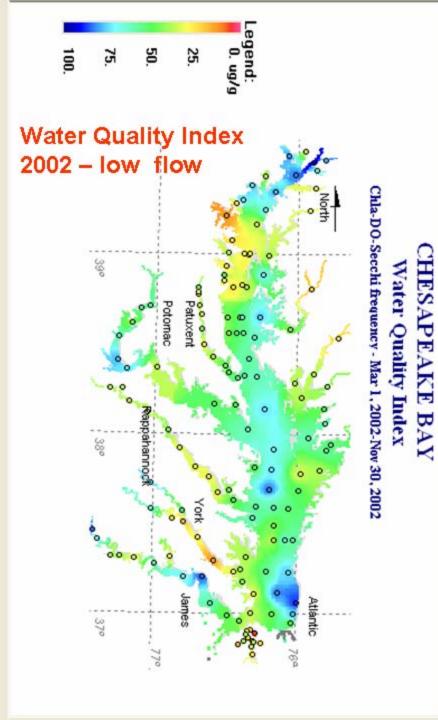

- % of samples passing threshold over growing season of interest
- % of samples within each segment passing threshold value is then areaweighted by the segments which constitute each reporting region

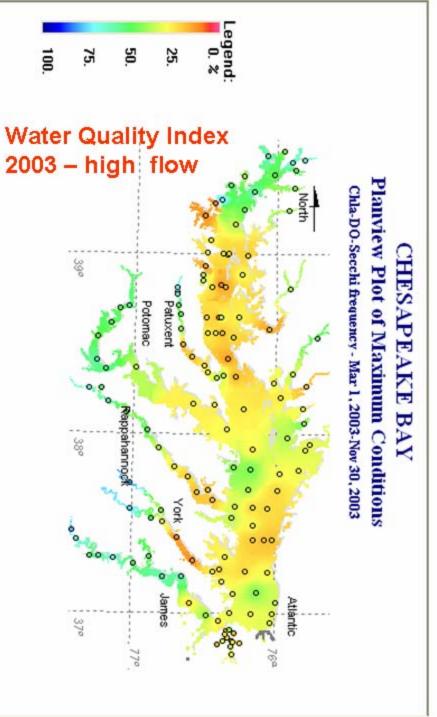

Testing the sensitivity of the WQI


Low (2002) & high (2003) flow years

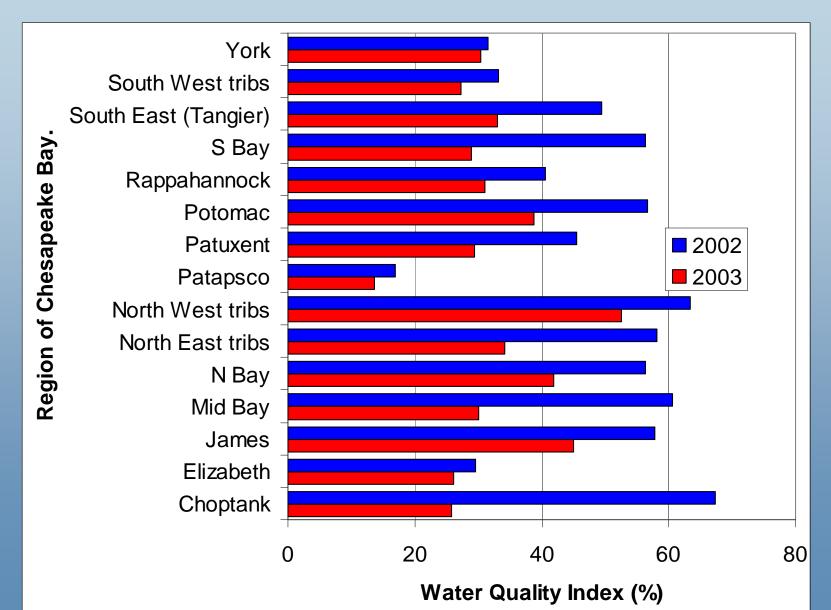
- 2002 → Approximates the 175 and 12.8 million pound restoration goals of N and P loads, respectively
- $2003 \rightarrow >2.5$ and >8 times their goals, respectively







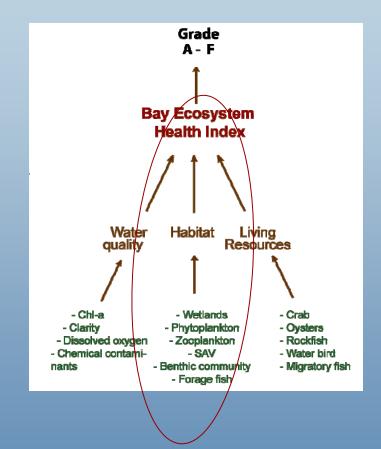
CHESAPEAKE BAY



Combining chl-a, DO and Secchi = WQI

2002 data	2002	2002	2002	2002	2003 data	2003	2003	2003	2003
Reporting Regions	Chl-a	DO	Clarity	WQI	Reporting Regions	Chl-a	DO	Clarity	WQI
Patapsco	0	51	0	16.8	Patapsco	0	41	0	13.6
Elizabeth	38	42	9	29.6	Choptank	4	73	0	25.8
York	25	65	5	31.5	Elizabeth	25	54	0	26.1
South West tribs	46	54	0	33.3	South West tribs	20	62	0	27.3
Rappahannock	30	81	11	40.6	S Bay	4	77	5	28.9
Patuxent	39	90	7	45.5	Patuxent	13	72	4	29.3
South East (Tangier)	49	93	7	49.5	Mid Bay	13	59	19	30.0
N Bay	53	86	30	56.4	York	36	50	6	30.4
S Bay	30	93	46	56.4	Rappahannock	19	66	7	31.1
Potomac	58	82	30	56.6	South East (Tangier)	12	82	5	33.0
James	59	100	14	57.8	North East tribs	12	74	16	34.1
North East tribs	50	81	44	58.2	Potomac	38	73	5	38.8
Mid Bay	63	73	45	60.5	N Bay	41	79	6	41.9
North West tribs	63	98	29	63.4	James	47	85	3	45.1
Choptank	70	83	49	67.3	North West tribs	46	100	12	52.6

Comparing 02 and 03 WQI


Calculating the Biotic Index (BI)

-Metrics used:

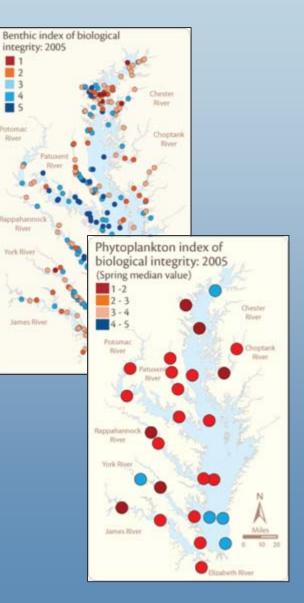
- SAV
- Phytoplankton IBI
- Benthic IBI

-Thresholds:

- SAV: segment specific restoration goals (acres)
- PIBI and BIBI \rightarrow 3.0

SAV

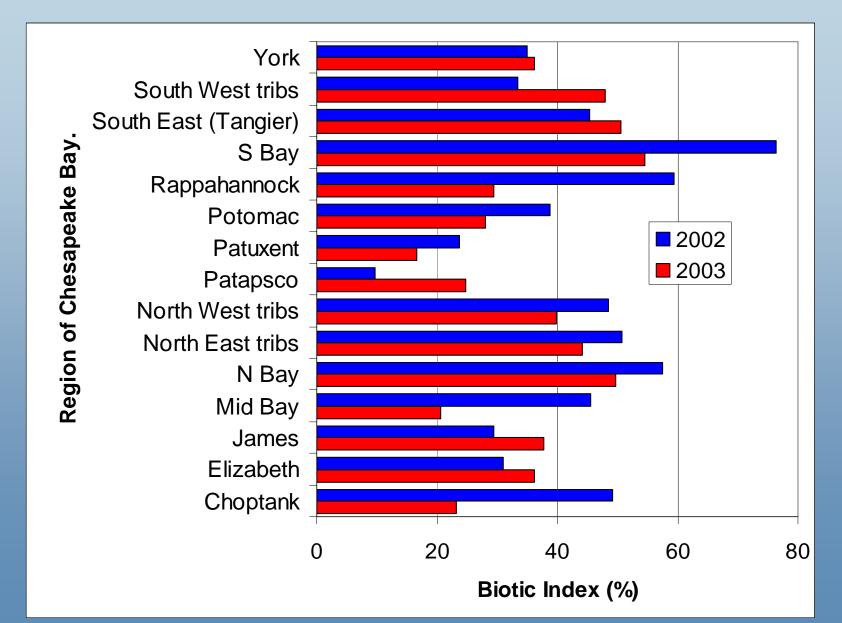
- Most recent year survey data
- Compliance of a reporting region
 - Total area present (acres) as a proportion of the total restoration goal


Reporting region	CBP segments included in region	SAV restoration goal by reporting region (acres)
Northern Bay	CB1TF, CB2OH, CB3MH	14,978
Mid Bay	CB4MH, CB5MH	18,436
Southern Bay	СВ6РН, СВ7РН, СВ8РН, МОВРН	32,286
Patuxent River	PAXMH, PAXOH, PAXTF	1,954
Potomac River	ANATF, MATTF, PISTF, POTMH, POTOH, POTTF	21,203
Rappahannock R.	CRRMH, RPPMH, RPPOH, RPPTF	2,534
York River	MPNOH, MPNTF, PMKOH, PMKTF, YRKMH & PH	3,304
James River	APPTF, CHKOH, JMSMH, JMSOH, JMSPH, JMSTF	2,629
Elizabeth River	EBEMH, ELIPH, LAFMH, SBEMH, WBEMH	No Grow Zone
Chester River	CHSMH, CHSOH, CHSTF	3,005
Choptank River	CHOMH1, CHOMH2, CHOOH, CHOTF	9,877
Tangier Sound	TANMH	38,336
Patapsco River	РАТМН	389
Nanticoke River	NANMH, NANOH, NANTF	15
TOTAL		148,946

Benthic and Phytoplankton IBI

• The BIBI and PIBI is scaled from 1 to 5, and sites with values of 3.0 or more are considered to meet the Restoration Goals.

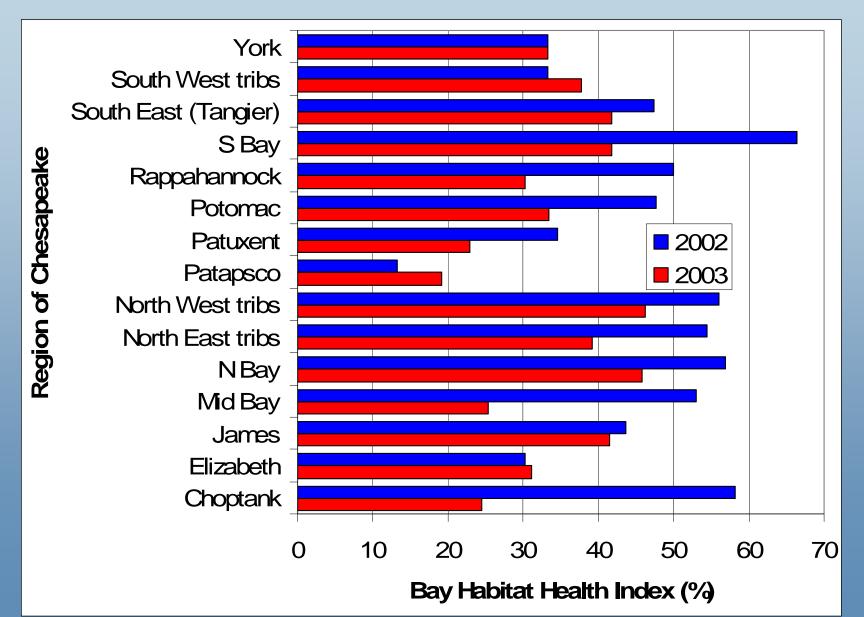
• BIBI


- Estimate the amount of area in a reporting region that meets the Restoration Goals
- PIBI
 - − % of samples with IBI ≥ 3.0 in reporting region
 - Area weighted segment %'s → reporting region %'s

Combining PIBI, BIBI and SAV = BI

2002 data	2002	2002	2002	2002	2003 data	2003	2003	2003	2003
Reporting Regions	P-IBI	B-IBI	SAV	BI	Reporting Regions	P-IBI	B-IBI	SAV	BI
Patapsco	0	27	2	9.8	Patuxent	8	24	18	16.6
Patuxent	18	36	17	23.7	Mid Bay	30	23	9	20.7
James	17	50	21	29.5	Choptank	12	31	27	23.2
Elizabeth	33	29	NGZ	31.0	Patapsco	10	63	2	24.7
South West tribs	NA	27	39	33.3	Potomac	25	20	39	28.1
York	11	60	34	34.9	Rappahannock	38	48	3	29.4
Potomac	41	28	47	38.7	Elizabeth	50	22	NGZ	36.1
South East (Tangier)	NA	48	43	45.4	York	57	16	35	36.1
Mid Bay	86	22	28	45.5	James	54	35	24	37.8
North West tribs	NA	68	29	48.5	North West tribs	NA	56	24	39.8
Choptank	18	60	69	49.1	North East tribs	NA	67	22	44.2
North East tribs	NA	67	35	50.7	South West tribs	NA	63	34	48.1
N Bay	39	68	66	57.4	N Bay	41	56	52	49.7
Rappahannock	56	52	70	59.4	South East (Tangier)	NA	76	25	50.5
S Bay	94	75	60	76.3	S Bay	51	56	57	54.6

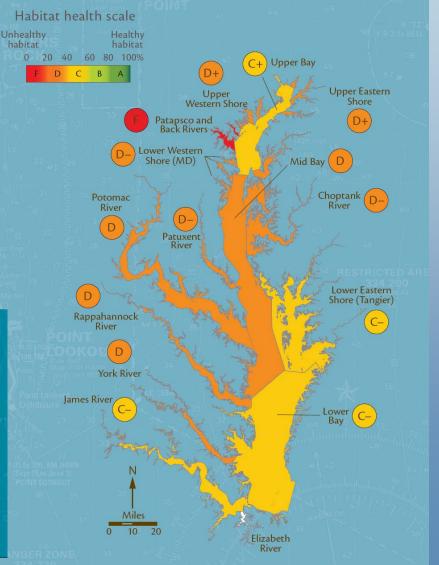
Comparison of 02 & 03 BI


Combining WQI and BI = BHHI (2002)

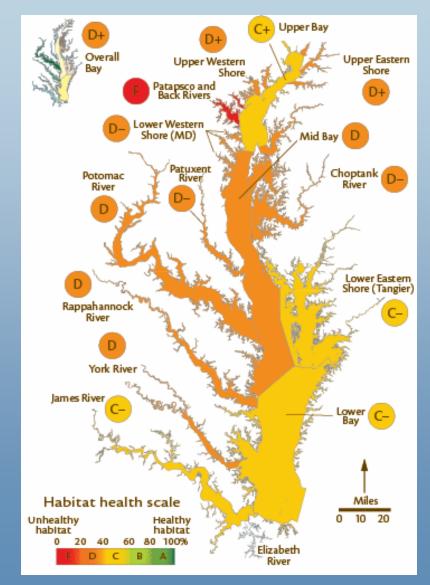
2002 data	2002	2002	2002	2002	2002	2002	2002	2002	2002
Reporting Regions	Chl-a	DO	Clarity	WQI	P-IBI	B-IBI	SAV	BI	BHHI
Patapsco	0	51	0	17	0	27	2	10	13
Elizabeth	38	42	9	30	33	29	NGZ	31	30
York	25	65	5	31	11	60	34	35	33
South West tribs	46	54	0	33	no data	27	39	33	33
Patuxent	39	90	7	45	18	36	17	24	35
James	59	100	14	58	17	50	21	29	44
South East (Tangier)	49	93	7	49	no data	48	43	45	47
Potomac	58	82	30	57	41	28	47	39	48
Rappahannock	30	81	11	41	56	52	70	59	50
Mid Bay	63	73	45	61	86	22	28	46	53
North East tribs	50	81	44	58	no data	67	35	51	54
North West tribs	63	98	29	63	no data	68	29	49	56
N Bay	53	86	30	56	39	68	66	57	57
Choptank	70	83	49	67	18	60	69	49	58
S Bay	30	93	46	56	94	75	60	76	66

Combining WQI and BI = BHHI (2003)

	0000	0000	0000	0000	0000	0000		0000	0000
2003 data	2003	2003	2003	2003	2003	2003	2003	2003	2003
Reporting Regions	Chl-a	DO	Clarity	WQI	P-IBI	B-IBI	SAV	BI	BHHI
Patapsco	0	41	0	14	10	63	2	25	19
Patuxent	13	72	4	29	8	24	18	17	23
Choptank	4	73	0	26	12	31	27	23	24
Mid Bay	13	59	19	30	30	23	9	21	25
Rappahannock	19	66	7	31	38	48	3	29	30
Elizabeth	25	54	0	26	50	22	NGZ	36	31
York	36	50	6	30	57	16	35	36	33
Potomac	38	73	5	39	25	20	39	28	33
South West tribs	20	62	0	27	no data	63	34	48	38
North East tribs	12	74	16	34	no data	67	22	44	39
James	47	85	3	45	54	35	24	38	41
S Bay	4	77	5	29	51	56	57	55	42
South East (Tangier)	12	82	5	33	no data	76	25	51	42
N Bay	41	79	6	42	41	56	52	50	46
North West tribs	46	100	12	53	no data	56	24	40	46


Comparison of 02 & 03 BHHI

2006 report card


- Release in April
- Report card, newsletter & websites
- Media event at Chesapeake Bay Program

2006: not a good year for habitat health

- Health generally poor
- Health varied from region to region
- Lowest grade: Patapsco & Back rivers (F)
- Highest grade: Upper Bay (C+)
- Overall Bay grade: D+

Chesapeake Bay Habitat Health Report Card: 2006

This report card provides a transparent, timely, and geographically detailed annual assessment of 2006 Chesapeake Bay habitat health. This report card complements the Bay-wide, long-term trend assessment produced by the Chesapeake Bay Program. A report card will be released each year, in early to mid April, providing an assessment of the previous year's habitat health. 2006 is the first year that the report card has been released. This report card rates 15 reporting regions of the Bay using six indicators that are combined into a single overarching index of habitat health. Habitat health is defined as progress of the six indicators towards established scientifically derived ecological thresholds or goals. A low score therefore means that the region rarely meets the ecological threshold levels. A high score means that the region often meets the threshold levels. This web site enables you to explore the report card via the 15 Bay regions, by the indicators and indices, and as an overview of 2006 Bay habitat health.

Move your mouse over the following icons to link to the information you would like to access.

Acknowledgements

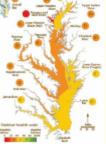
The data and methods underpinning this report card represent the collective effort of many individuals and organizations working within the Chesapeake Bay scientific and management community. The following organizations are acknowledged for their significant contributions to the development of the report card: Chesapeake Bay Program, University of Maryland Center for Environmental Science, National Oceanic and Atmospheric Administration, Maryland Department of Natural Resources, Virginia Department of Environmental Quality, Virginia Institute of Marine Science, Versar Incorporated, US Environmental Protection Agency, Maryland Department of the Environment, Interstate Commission on the Potomac River Basin, Old Dominion University, and Morgan State University.

While acknowledging the critical role of these organizations in generating, analyzing, and reviewing the data, the Integration and Application Network, University of Maryland Center for Environmental Science and EcoCheck (NOAA-UMCES Partnership) are responsible for the report card release.

www.eco-check.org

Impact of the first year

- Broad media coverage
 - Newspapers, TV and radio
 - Local, national and international
 - Focus on what needs to be done
- Likely adoption by MD Bay Stat
- Many request from educators (grade 8 to university)
- Many meetings and workgroups



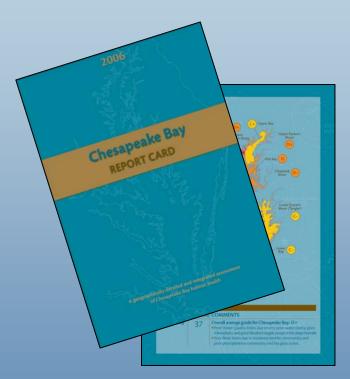
Chesapeake Bay Ecosystem in Poor Shape, Says Researchers

a Daily — A team of scientists led by the University of Mandand Center for Environmental Science recently released the first geographically detailed assessment of Checapeole Bay ecosystem health. While analysis of 2006 data shows that the Bay and its rivers are in poor health, its northern and southern areas tend to be slightly healthier than the middle Boy region

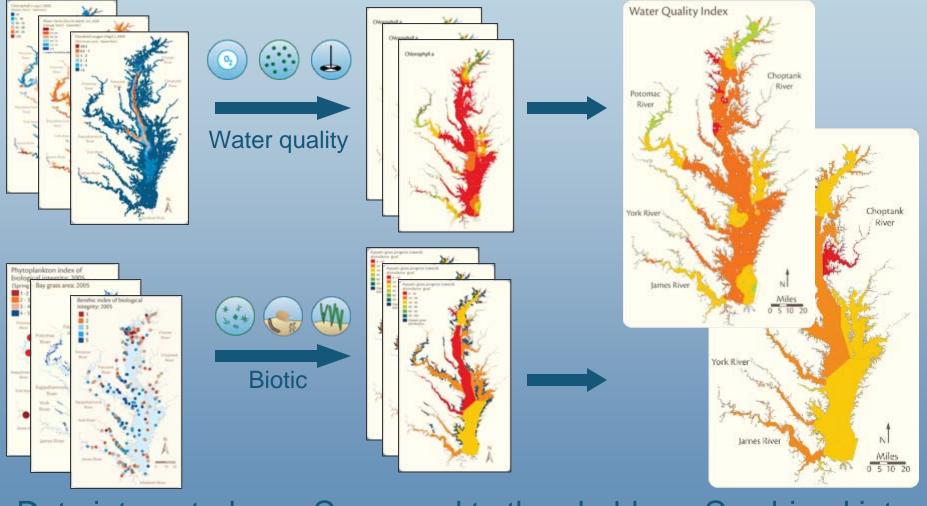
The Chasapaske Eag Report Card workdep is veteral deally robustdiscontractionally distailed anual assessment of Checapeak Bay eccaratem health. The report weathing to a second and water quality and habitat health into a single score for 15 regions of called for in the 2005 Government hermanismalise Many Kondon advan-

For the first time Day watershee vider bodies across the Invicemental Spiece researche roject leader Bill Demnison territically detailed ofernation is a new tool that here bee stepping managers and minumental advocates cun cus restanation afforts.

Data calls and for 2008 pairs a loak picture of Checapeake Bay eccevaters health;


These seconds. They General Card Mass As Alasha shows varied, but now ecception health across the Day ext do meno. (Gredil: Decape creatings of Onion If Moultant Contex has Francesonated Scienced

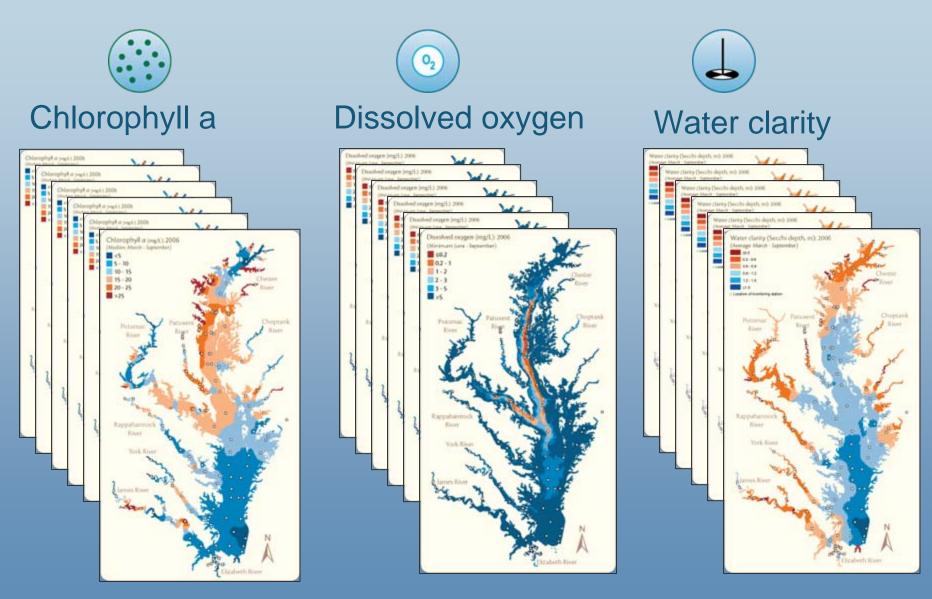
Acknowledgements


- Ad hoc work group members:
 - Claire Buchanan (ICBRB)
 - Roberto Llansó's (VERSAR)
 - Peter Bergstrom (NOAA)
 - Jackie Johnson, (ICPRB/CBP)
 - Rick Hoffman (VADEQ)
 - Bruce Michael (MDDNR)
 - Richard Lacouture (Morgan State Univ.).
- Member of the Chesapeake Bay Program workgroups
 - Tidal Monitoring and Analysis workgroup
 - Living Resources Analysis workgroup

Why produce a report card

- Provide a performance derived letter or numeric grade to a component of the ecosystem or a geographic region
- Enable large and often complex amounts of information to be communicated to a broad audience
- Can provide accountability; measuring the success of a particular effort
- Identify regions or issues of concern

Water quality and biotic indicators combined into indices



Data integrated

Compared to thresholds

Combined into indices

Water quality indicators measured

