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Background:

Seriousness of low Dissolved Oxygen
is best expressed by motto of
American Lung Association:

“When You Can'’t Breathe, Nothing
Else Matters.”



Dead zones - a global change water quality problem
in the coastal ocean

Excess nutrients

(fertilizers, cars) Too many algae Algae die

By Mark
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Reactive Nitrogen
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Fig. 2. Estimated N deposition from global total N (NOy and NHx) emissions, totaling 105 Tg Ny, The
unit scale is kg N ha™" y™*, modified from the original units (mg m™ y™7) (16).
Galloway et al. 2008, Science
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Nutrient Enrichment and Other Stressors are Connected:

Multiple Stressors

Coastal Ecosystem Responses
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How Eutrophication/Hypoxia Became a
Global Problem

> The increasing input of nutrients to coastal areas over
the last 60 years resulted in system overload.

> Strong correlation through time between:

> population growth
> increased nutrient discharges World Population
: : : from O to 2000 A.D
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Nutrients & Hypoxia a Global Problem:

*Doubling of sites first reporting hypoxia started in 1960s.
=400 systems with reports of hypoxia/anoxia
«>100 eutrophic sites in danger of developing hypoxia/anoxia.
*OMZ and Upwelling areas not included.
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Spread of Hypoxia

In the 1960s the number of systems with reports of hypoxia-related
problems increased.
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Spread of Hypoxia

1970s more increase in the number of hypoxic systems.
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Spread of Hypoxia

1980s explosive increase in the number of hypoxic systems.
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Spread of Hypoxia

By the 1990s most estuarine and marine systems in close proximity to
populatlon centers had reports of hypOXIa or anoxia.
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Spread of Hypoxia

2000s numbers continue to expand.




Hypoxia a Paradox of Eutrophication

Initial increase in nutrient loading leads to an initial
Increase In fisheries production.

As nutrient loading continues to increase the system
approaches an organic matter saturation point.

At some point,
organic matter is
not efficiently
processed
through
fishery species.

Caddy 1993
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100% Saturation
7 1o 8 mgh*
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Gullmarsford, Sweden
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Energy Pulsing to Reduction

As hypoxia develops it becomes a key factor in
regulating energy flow by forcing ecosystem to

pulse.

Community Organization
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Ecosystem Energy Flows
Processes and pathways that are favored by hypoxic
conditions taking larger portions of ecosystem's
energy. Ultimately, microbes dominate.
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Interaction of Eutrophication/Hypoxia and Energy

Daily production in Chesapeake Bay is related to DO concentration.
Average year Bay has 2,000 km2 dead zone.
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This is 3-5% of Bay’s annual secondary production.
75,000 metric tons of worms and clams.



Figure 6 Caddy 2000
Simultaneous Effects of Eutrophication and Fishery Harvest on Marine Food Chains
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Multiple Stressors Involved:
*Fishing pressure

*Trophic shifts in PP species
*Habitat degradation/loss
*Mortality/stress from hypoxia
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Response to Eutrophication/Hypoxia

* Increased input of organic matter leads to increase
biomass, but Hypoxia/Anoxia tend to reduce
biomass.

* Favors opportunistic species, lower species
diversity, and increased importance of microbes.

* Eutrophication preconditioned fauna to lessen
response to hypoxia when it occurs.

 Lack of benthic response to short-term periodic
hypoxia.

 Pulsed recolonization with annual hypoxia.



nage basin and the estimated hypoxy areas in the ECS (33),
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Remission from Economic Reduction in Nutrient Loading

Improved
Black Sea (Mee et al. 2005) Tokyo Bay (Kodama et al. 2002)
Time Fisheries & WQ Time Fisheries & WQ
<1960 T <1930 T
1970s l Mid 30s |
1990s T Late 40s T

2000s ?? Early 70s | |
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Recovered with Nutrient Management

14 systems have responded positively.

System o Country/State
Forth estuary England
Mersey Estuary England
. Thames estuary England
‘%ﬁ: ' . Elbe Estuary Germany
That¥ Los Angeles Harbor US-California
: Delaware River US-Delaware
e Tampa Bay US-Florida
! Dorchester Bay US-Massachusetts
East River US-New York
Great South Bay US-New York
Hudson River US-New York
New York City Harbor US-New York
Raritan Bay US-New York/New Jersey

Charleston Harbor US-South Carolina



Climate Change and Coastal Oxygen

* Predictors for future oxygen budgets
are not good:

* | ower dissolved oxygen content of world oceans
(Keeling and Garcia 2002 Proc Nat Acad Sci)

* Expansion of Oxygen Minimum Zones and
upwelling (Helly and Levin 2004 Deep-Sea Res)

* Expansion of anthropogenic hypoxia (Diaz &

Rosenberg 2008 Science, Rabalais et al. 2007 Estuaries &
Coasts)



OMZ at <0.5 ml/l Touch 1,148,000 km? of Seafloor
Along Continental Margins.
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Eutrophication Driven Hypoxia Covers
Over 207,000 km? of Seafloor.

* This is a conservative estimate, only 30% of hypoxic
systems have area estimates.

* Coastal systems account for 75% of hypoxia
* Baltic Sea
* Mississippi/Atchafalaya River Plume
* German Bight

* East China Sea



Expansion OMZ and Upwelling =

(Grantham et al. 2004 Nature, Chan et al. 2008 Science )

Oregon Coast, USA www primidi.corm
Upwelling increase linked to shifts in regional climate forcmg
 Strong interannual changes in upwelling wind stress

* Nutrient supply to California Coastal Current

Severe inner-shelf hypoxia and anoxia since 2000,

>32,000 km? in 2006
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Gulf of Mexico - LA Continental Shelf
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Gulf of Mexico - LA Continental Shelf
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Two Part Key to Future Hypoxia

Land Use Climate Change
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sSummary

The amount of low dissolved oxygen continues
to expand.

Some improvement in hypoxia was observed in
large systems with a return of benthos:

Black Sea - Economic Nutrient Reduction

Gulf of Finland - Breakup of stratification
KoK ErRg I ARANWHR RMEBYS BN tds and

Hudson River, Delaware River, East River

Mersey Estuary, Elbe Estuary
thgtionBwillnd@rliminated ecosystem



How to Reduce Hypoxia

* Action plans all incorporate Nitrogen load reduction

* Agricultural Best Management Practice (fertilizer
reductions)

* Wetland and buffer strip restoration

* For Gulf of Mexico, a 30% nitrogen load reduction
(Rabalais et al. 2007):

* Reduce fertilizer by 40%

®* Restore 18 million acres of wetlands
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Fig. 3. Conceptual model of where interventions in the N cycle can be used to decrease the amount
of Nr created or the amount of Nr lost to the environment. The red boxes represent subsystems where
Nr is created. The sky-background space represents the environment. Arrows leaving the red boxes
either result in Nr lost to environment (fossil fuel and biofuel combustion) or inputs to the food
production system (gray box). The light blue boxes within the gray box represent subsystems within
the food production system where Nris used. Nr can either enter these subsystems (thin red lines), or
be lost to the environment (thick red lines). The numbers represent intervention points for N
management. The pie chart shows the magnitude of Nr managed by the four interventions relative to

T .

the total amount created (187 Tg N) in 2005. Galloway et al. 2008, Science



Future Hypoxia

National Geographic’s, Strange Days on Planet Earth
Episode 6, Dirty Secrets, 2008. Visual by Sea Studios Foundation.




