

Regional Modeling of Atmospheric Deposition with CMAQ as a tool for Ecosystem Based Management

Robin L. Dennis

National Exposure Research Laboratory Atmospheric Modeling and Analysis Division, US EPA

APNEP STAC Meeting Washington, NC October 15, 2009

Regional Modeling of Atmospheric Deposition with CMAQ as a tool for Ecosystem Based Management

Organization of Talk:

What is CMAQ (Community Multiscale Air Quality model) *How does it perform regionally*

What does N deposition look like across the A-P region Species of nitrogen deposition? What are the sources?

The special case of ammonia

What deposition levels do we expect in 2020 compared to 2002

Atmospheric Nitrogen Deposition - Eutrophication

Nitrogen Loading to Estuaries by Source Type

- Air accounts for 20-35% of N loading to estuaries (both indirect and direct)
- Chesapeake Bay & Neuse: Air accounts for ~30% of N loading
- A regional atmospheric deposition model can provide useful information for Ecosystems Based Management regarding these deposition inputs

Environmental Protection

Agency

Schematic Representation of the

Community Multiscale Air Quality (CMAQ) Model

Environmental Protection

Fossil Fuel Combustion that Produces Nitrogen and Sulfur Oxides $(NO_x \text{ and } SO_x)$ and **Agricultural Production** that Produces Ammonia are are the Main Sources of Inorganic PM₂₅ and Nitrogen **Deposition**

Office of Research and Development

The Partitioning Between Gases and Particles, Which Is Determined by Ammonia Availability, **Greatly Affects Concentrations** of aNO_3^- and aSO₄⁼ Which **Have Low Rates of Dry Deposition**

How well does CMAQ perform?

Compare model wet deposition estimates against NADP wet deposition measurements

Correct for precipitation error

182 NADP monitoring sites

modeled SO4 wet depostion (kg/ha)

Precipitation-Corrected Wet Deposition SO₄: Has the least uncertainty

Observed vs. Modeled Wet Deposition SO₄

MB = 0.2 kg/haRMSE = 2.5 kg/ha MB = 2.4 kg/ha RMSE = 5.1 kg/ha NMB = 1 % NME = 15 % NME = 29 % NMB = 20 % RMSEs = 0.5 kg/ha RMSEs = 2.9 kg/ha 40 6 RMSEu = 2.5 kg/ha (69 % decrease) RMSEu = 4.2 kg/ha R^2 = 0.88 $R^{2} = 0.79$ Adjusted modeled SO4 wet depostion (kg/ha) $R^2 = 0.79$ $R^{2}=0.88$ 30 30 **Bias: 20% Bias: 1%** 20 20 0 10 Model values adjusted with NADP precipitation. Southwest Southwest Model = CMAQ 12km 2002af South South 0 0 Great Lake Great Lake 0 10 20 30 40 10 20 30 40

observed SO4 wet deposition (kg/ha)

observed SO4 wet deposition (kg/ha)

Observed vs. Adjusted Modeled

Wet Deposition SO₄

Office of Research and Development

PRISM orographic enhancements are evident

Adjusted CMAQ Wet Deposition SO₄ (kg/ha)

Model values adjusted with **PRISM** precipitation.

Precipitation Ratio: PRISM / CMAQ

Precipitation-Corrected Wet Deposition NO₃: Intermediate uncertainty

Observed vs. Modeled Wet Deposition NO₃

Observed vs. Adjusted Modeled Wet Deposition NO₃

Office of Research and Development

Precipitation-Corrected Wet Deposition NH^₄: Has the most uncertainty

Observed vs. Modeled Wet Deposition NH₄

Observed vs. Adjusted Modeled Wet Deposition NH₄

observed NH4 wet deposition (kg/ha)

Office of Research and Development

Resultant Wet Deposition Fields for NO₃ and NH₄

Adjusted CMAQ Wet Deposition NO₃ (kg/ha)

United States

Agency

Environmental Protection

Adjusted CMAQ Wet Deposition NH₄ (kg/ha)

Model values adjusted with PRISM precipitation and then bias adjusted.

Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling Division

Model values adjusted with PRISM precipitation and then bias adjusted.

United States Environmental Protection Agency

CMAQ is able to capture local concentration gradients of key species in NC (2004 data)

Office of Research and Development

What does the deposition look like across The A-P region: 2002 Total oxidized-N

What does the deposition look like across The A-P region: 2002 Total oxidized-N

Layer 1 TOTALOX_N[1]

What does the deposition look like across The A-P region: 2002 Total reduced-N

Layer 1 TOTALRED_N[1]

What does the deposition look like across The A-P region: 2002 Total N

Layer 1 TOTAL_N[1]

Where is the relative contribution of ox-N deposition to total N deposition important across the A-P region: It's in the headwaters

Layer 1 TOTALOX_N[1]/TOTAL_N[1] 1.0 145 143 141 0.9 139 137 0.8 135 133 131 0.7 0.7 129 127 0.6 125 0.6 123 121 ≻ 0.5 0.5 -119 117 115 0.4 0.4 113 111 109 0.3 0.3 -107 105 0.2 -103 101 99 0.1 97 95 191 196 201 206 211 216 221 226 231 236 241 246 251 0.0 0.0 Х December 31, 0002 00:00:00 UTC Ratio

Min (226, 105) = 0.119, Max (192, 104) = 0.836

Office of Research and Development

Where is the Nitrogen Coming From?

PRINCIPAL NITROGEN AIRSHEDS FOR: PAMLICO SOUND

The emissions that contribute most to the deposition in the A-P region come from many states, not only NC

Any action to reduce atmospheric deposition to the A-P region will require regional, multistate reductions in NO_x and NH_3 emissions

Oxidized Nitrogen Deposition State Responsibility

	Deposition to Chesapeake Bay Watershed		
		1990	2020
PHINCIPAL NITHOGEN AIRSHEDS FOR: CHESAPEAKE BAY	Delaware		1.2%
	Maryland	9.1%	7.9%
	New York		4.6%
	Pennsylvania	16.8%	16.4%
	Virginia	10.4%	14.9%
	West Virginia		4.6%
	Six State (calculated as a group)		49.3%

Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling Division

What Sectors are Responsible For the Nitrogen Emissions

	2002 NO _X Emissions in NO _X Airshed (8 States) % by Sector	2002 NH ₃ Emissions in NH ₃ Airshed (4 States) % by Sector
Mobile	38.5 %	8.9 %
NonRoad	14.4 %	0.1 %
Power Plants	28.0 %	0.3 %
Industrial Points	10.3 %	2.3 %
Area Sources	6.3 %	0.9 %
Agriculture/Biology	1.8%	86.8 %
Other	0.71 %	0.6 %

Mobile + Power Plant sources responsible for $2/3^{rds}$ of NO_X emissions

What States are Responsible For the Nitrogen Emissions

	2002 NO _X Emissions in NO _X Airshed	
	(8 States) % by State	
Delaware	16%	
Delaware	1.0 70	
Georgia	18.6 %	
Maryland	8.3 %	
North Carolina	17.3 %	
Pennsylvania	21.7 %	
South Carolina	10.2%	
Virginia	14.5 %	
West Virginia	7.7 %	

	2002 NO _X Emissions in NH ₃ Airshed (4 States) % by State	2002 NH ₃ Emissions in NH ₃ Airshed (4 States) % by State
Maryland	16.6 %	10.7 %
North Carolina	34.4 %	57.4 %
South Carolina	20.2 %	12.4 %
Virginia	28.8 %	19.5 %

A Special Look at Ammonia

- Ammonia is important and there is a conventional wisdom among some that all ammonia emissions deposit very near the point of emission, i.e. locally.
- This is incorrect. We have conducted some model NH₃ budget studies for NC conditions to estimate the appropriate NH₃ fate (according to CMAQ). The CMAQ results are very consistent with semiempirical studies carried out in NC by John Walker (EPA) and Wayne Robarge (NCSU).
- We particularly examined:
 - The budget of a high-emitting cell at the surface, and
 - The range of influence of the emissions from a single, high-emitting cell

Ammonia is also more complex than most species because its air-surface exchange is bi-directional, not unidirectional. So we performed our NH_3 budget studies with three different estimates of the rate of air-surface exchange

Office of Research and Development

Only about 10% of the Local NH₃ Emissions Deposit Locally (consistent with semi-empirical studies)

June 2002

Range of Influence: Single NC Maximum Cell

The Range of Influence of NH₃ **Emissions is** Influenced by the **Dry Deposition** Formulation. It **Increases With a** Change from the **Base CMAQ to** the Bi-directional Flux Formulation for NH₃

What is Expected to Happen to Deposition In the Future out to 2020

Does Responsibility for Oxidized Nitrogen Emissions Change in 2020 With CAA Reductions

Sectors	2002 NO_X Emissions in NO_X Airshed (8 States)	2020 NO_X Emissions in NO_X Airshed (8 States)	States	2002 NO _X Emissions in NO _X Airshed (8 States) % by State	2020 NO _X Emissions in NO _X Airshed (8 States) % by State
	% by Sector	% by Sector			
Mobile	38.5 %	20.7 %	Delaware	1.6 %	1.8 %
			Georgia	18.6 %	19.3 %
NonRoad	14.4 % 18.7 %	18.7 %			
Power Plants	28.0 %	21.9 %	Maryland	8.3 %	7.5 %
· · · · · · - ·			North Carolina	17.3 %	15.3 %
Industrial Points	10.3 %	18.6 %			04.4.0/
Area Sources	6.3 %	14.3 %	Pennsylvania	21.7 %	21.4 %
			South Carolina	10.2%	10.0%
Biologenics	1.8%	4.2 %			
Other	0.71 %	1.6 %	Virginia	14.5 %	15.9 %
			West Virginia	7.7 %	8.6 %

The emissions reductions stemming from CAA regulations aimed at reducing human **Environmental Protection** health risk are expected to significantly reduce oxidized nitrogen deposition by 2020

Office of Research and Development

Jnited States

Agency

Min (6, 117) = 0.224, Max (36, 235) = 1.396

Office of Research and Development

- Regional atmospheric deposition models, like CMAQ, can provide useful information for ecosystem based management (EBM) related to the questions of how much, what form, and where from
- To fully realize the potential to contribute to EBM the air models need to be linked with ecosystem / watershed / biogeochemical cycling models. This is not a trivial exercise and we are working on the linkage issues
- We are also working on approaches to downscale meteorology for climate change analyses in ways to support the study of the impacts on ecosystems