APNEP Air Resources Indicator Report

Donna Schwede

US EPA Office of Research and Development

Proposed Indicators and Metrics

(Blue = Indicator, Green = Associated metric; 2012 = Metrics included in the last ecosystem assessment)

Ecosystem Stressors

4 indicators, 7 metrics

- Nutrient Deposition (draft completed)
 - Total (inorganic + organic) nitrogen deposition (2012)
- Ambient Ozone (draft completed)
 - Ground-level ozone concentration (2012)
- Metals Deposition
 - Mercury deposition
- Regional Climate (draft in prep)
 - Ambient air temperature (2012)
 - Precipitation (2012)
 - Storm frequency and severity (2012)
 - Photosynthetically active radiation (PAR)

Air MAT Report Development Process

- Air MAT Meeting March 2017
- Webinars (Jan, July 2018) to revisit/discuss metrics
 - What do we have the data to support?
 - Do we have the people we need to develop the report?
- "Refresh" Air MAT membership
 - Expand technical expertise and numbers
 - Leverage support from different agencies helpful if MAT members have support from management to work on APNEP
- Solicit "champions" for each indicator
- Champions pull together team to work on indicator
 - Look for new data; approaches
- Draft prepared for indicator and circulated to Air MAT team for comment

Air MAT Member "Refresh"

Name	Affiliation	
Jared Bowden	North Carolina State University, Department of Applied Ecology	
Corey Davis	North Carolina Climate Office	
Robin Dennis	U.S. Environmental Protection Agency (Ret.)	
Cari Furiness	North Carolina State University, DOI Southeast Climate Adaptation Science Center	
David Glenn	U.S. National Weather Service	
Jim Hawhee	North Carolina Division of Water Resources	
Heather Murphy	North Carolina Division of Air Quality	
Donna Schwede	U.S. Environmental Protection Agency, National Research Exposure Laboratory	
Richard Smith	University of North Carolina at Chapel Hill, Department of Statistics and Operations Research	
John T. Walker	U.S. Environmental Protection Agency, National Research Exposure Laboratory	
Jessica Whitehead	North Carolina Sea Grant	

Nitrogen Metrics for 2020 Report

- Measured Annual Wet N Deposition
 - 7 NADP/NTN sites
 - 3 sites 1980 present
- Measured Annual Rainwater N Concentration
 - 7 NADP/NTN sites
 - 3 sites 1980 present
- Modeled Total N Deposition
 - NADP/TDEP data at 4 km
 - Spatial pattern as well as budget of oxidized/reduced
- Measured Annual Average Concentration of N Aerosols and Gases
 - 2 CASTNET sites
 - 1990 present
- Measured Ammonia concentrations
 - 4 AMoN sites
 - 2016-2017

Total N Deposition – NADP TDEP Data

http://nadp.slh.wisc.edu/committees/tdep/tdepmaps/

NH₃ Concentration – NADP/AMoN data

- High spatial variability
- NH3 exchanges bidirectionally
- Need modeling to get fluxes
- Expand monitoring?

http://nadp.slh.wisc.edu/AMoN/

Include critical loads exceedance information

- Looking beyond the deposition value alone
 - Critical load deposition level below which harmful effects are not thought to occur
- New EPA Tool Critical Loads Data Mapper
 - <u>https://clmapper.epa.gov</u>
- Deposition data from multiple sources
 - CMAQ
 - CMAQ NADP/NTN fusion
 - NADP TDEP
 - Climate simulations
- National Critical Loads Database (NCLD)
 - <u>http://nadp.slh.wisc.edu/committees/clad/db/</u>
 - Steady state forest ecosystem and surface water critical loads values

Example: Aquatic Acidification Exceedance

Plots show deposition in excess of critical load

- Positive values are exceedances
- Are these useful?
- How do we set goals for reduction of exceedances?

Ground-level Ozone

- Metric: Ozone Cumulative Concentration-weighted Index (W126)
 - cumulative, biologically-relevant exposure to ozone concentrations that is associated with plant damage during the April – October growing season
 - assigns greater weight to high hourly ozone concentrations over low- or midlevel concentrations.
 - Only average hourly concentrations for daylight hours (8am 8pm) are used to calculate W126 values. Units are parts per million-hours (ppm-hours). Lower values are more stringent or protective than higher values.
 - 10 ozone monitoring stations in North Carolina within the Albemarle-Pamlico region that have sufficient data to be included in the assessment analysis and are currently in operation

W126 Ozone Exposure Index Values for Albemarle-Pamlico Region (1998 - 2017)

Year

■ Lenoir ■ Pitt ■ Martin ■ Edge com be ■ Johnston ■ Wake ■ Durham ■ Granville ■ Person ■ Carteret ■ Suffolk City ■ Average

Background on climate indicators

The World Meteorological Organization includes expert teams on the extreme event definitions, monitoring, climate change detection, and development of climate indices.

- Task Team on the Definition of Extreme Weather and Climate Events (TT- DEWCE)
 - Goal is to list the existing definition of hazards and develop a catalogue of extreme weather and climate events for easy reference (globally)
 - Will develop a global portal for extreme weather and climate events (not currently available)
- Task Team on National Climate Monitoring Products (TT-NCMP)
 - Develop national climate monitoring products allows easier direct comparison from country to country for global modeling
 - Standard practices such as defining base period of calculating anomalies for comparisons
 - Mostly consists of area averages and not as helpful for regional to local monitoring
- Expert Team on Climate Change Detection and Indices (ETCCDI)
 - Determined a set of climate indices for temperature and precipitation to diagnose and describe the state of the climate

ETCCDI 27 Core Indices

ID	Indicator name	Definitions	<u>UNITS</u>
FD0	Frost days	Annual count when TN(daily minimum)<0ºC	Days
SU25	Summer days	Annual count when TX(daily maximum)>25 ^o C	Days
ID0	Ice days	Annual count when TX(daily maximum)<0ºC	Days
TR20	Tropical nights	Annual count when TN(daily minimum)>20ºC	Days
GSL	Growing season Length	Annual (1st Jan to 31 st Dec in NH, 1 st July to 30 th June in SH) count between first span of at least 6 days with TG>5°C and first span after July 1 (January 1 in SH) of 6 days with TG<5°C	Days
TXx	Max Tmax	Monthly maximum value of daily maximum temp	₽C
TNx	Max Tmin	Monthly maximum value of daily minimum temp	°C
TXn	Min Tmax	Monthly minimum value of daily maximum temp	°C
TNn	Min Tmin	Monthly minimum value of daily minimum temp	°C
TN10p	Cool nights	Percentage of days when TN<10th percentile	Days
TX10p	Cool days	Percentage of days when TX<10th percentile	Days
ТN90р	Warm nights	Percentage of days when TN>90th percentile	Days
ТХ90р	Warm days	Percentage of days when TX>90th percentile	Days
WSDI	Warm spell duration indicator	Annual count of days with at least 6 consecutive days when TX>90th percentile	Days
CSDI	Cold spell duration indicator	Annual count of days with at least 6 consecutive days when TN<10th percentile	Days
DTR	Diurnal temperature range	Monthly mean difference between TX and TN	°C
RX1day	Max 1-day precipitation amount	Monthly maximum 1-day precipitation	Mm
Rx5day	Max 5-day precipitation amount	Monthly maximum consecutive 5-day precipitation	Mm
SDII	Simple daily intensity index	Annual total precipitation divided by the number of wet days (defined as PRCP>=1.0mm) in the year	Mm/day
R10	Number of heavy precipitation days	Annual count of days when PRCP>=10mm	Days
R20	Number of very heavy precipitation days	Annual count of days when PRCP>=20mm	Days
Rnn	Number of days above nn mm	Annual count of days when PRCP>=nn mm, nn is user defined threshold	Days
CDD	Consecutive dry days	Maximum number of consecutive days with RR<1mm	Days
CWD	Consecutive wet days	Maximum number of consecutive days with RR>=1mm	Days
R95p	Very wet days	Annual total PRCP when RR>95 th percentile	Mm
R99p	Extremely wet days	Annual total PRCP when RR>99 th percentile	mm
PRCPTOT	Annual total wet-day precipitation	Annual total PRCP in wet days (RR>=1mm)	mm

Survey for 27 ETCCDI core climate indices

- 21 total participants
- Request no more than 3 temperature and 3 precipitation indices from list
- There are 16 temperature indices
 - 53 responses
- A total of 11 precipitation indices
 - 52 responses
- Responses from
 - Aquatic Fauna
 - Submerged Aquatic Vegetation
 - Terrestrial
 - Water
 - Wetlands

Survey Results for Temperature Indices

- Growing Season Length (34%) : 6 days daily mean temp. above 5°C to start and below 5°C to end (41F)
- Frost Days (13%) : count daily min below 0 ° C (32F)
- Summer Days (13%) : count daily max above 25 ° C (77F)
- Percentage of Days when Daily Max. Temperature > 90th Percentile (9%)
- Number of tropical nights (8%): count min. temperature >20 ° C (68F)
- Number of icing days (6%): count max. temperature < 0 ° C
- Warm Spell Duration Index (6%): 6 consecutive days max temperature > 90th percentile
- Monthly maximum value of daily min. temperature (4%)
- Monthly minimum value of daily min. temperature (4%)
- Percentage of days when maximum temperature < 10th percentile (1%)
- Daily temperature range(1%): monthly mean difference

Survey Results for Precipitation Indices

- Maximum length of dry spell (30%) : Number of consecutive days precipitation < 1mm per year/period
- Simple daily precipitation intensity (15%) : average precipitation intensity on wet days per year/period
- Maximum length of wet spell (13%) : max number of consecutive days precipitation > 1mm in year/period
- Annual total precipitation in wet days (10%)
- Monthly maximum consecutive 5-day precipitation in year/period (10%)
- Monthly Maximum 1-day precipitation in year/period (8%)
- Annual count of days when precipitation >10 mm in year/period (4%)
- Annual count of days when precipitation > 20mm in year/period (4%)
- Annual count of days when precipitation > user defined (4%)
- Annual total precipitation when precipitation > 95th Percentile (2%)

Growing Season Length – definition issue for NC

GSL Lewiston_COOP_ID_314962

GSL Plymouth_COOP_ID_316853

Year R2= 4.2 p-value= 0.092 Slope estimate= 0.233 Slope error= 0.136

GSL New_Bern_COOP_ID_316108

R2= 0.2 p-value= 0.74 Slope estimate= 0.036 Slope error= 0.107

In NC the horticulture definition

growing season is defined as the number of days without an air temperature of 32°F

https://content.ces.ncsu.edu/average-growing-season-for-selected-north-carolina-locations

	GSL (Days)	Annual Standard Deviation (Days)
Plymouth	195	15
Lewiston	N/A	N/A
New Bern	232	18
Kinston	214	21

Consecutive Dry Days

Year R2= 1.5 p-value= 0.378 Slope estimate= -0.042 Slope error= 0.047

CDD Kinston_COOP_ID_314684

Year R2= 2.3 p-value= 0.207 Slope estimate= -0.036 Slope error= 0.029

CDD New_Bern_COOP_ID_316108

R2= 5.8 p-value= 0.058 Slope estimate= -0.061 Slope error= 0.032

CDD Lewiston_COOP_ID_314962

CDD Plymouth_COOP_ID_316853

Next Steps

- More frequent MAT meetings (quarterly?) keep momentum going
- Indicator reports
 - Finalize reports for Nitrogen and Ozone
 - Develop draft for Regional Climate
 - Develop draft for Mercury
- Build support for APNEP work in agencies
 - EPA set up meetings with ORD and APNEP; APNEP is not on the radar like other NEPs (e.g. Chesapeake Bay, Narragansett)
- What additional monitoring or measurements are needed?
 - Organic N
 - Flux measurements