HYDROLOGIC AND WATER-QUALITY DATA IN SELECTED AGRICULTURAL DRAINAGES IN BEAUFORT AND HYDE COUNTIES, NORTH CAROLINA, 1990-92

U.S. GEOLOGICAL SURVEY Open-File Report 93-78

Prepared in cooperation with the

DIVISION OF ENVIRONMENTAL MANAGEMENT of the NORTH CAROLINA DEPARTMENT OF ENVIRONMENT, HEALTH, AND NATURAL RESOURCES

COVER PHOTOGRAPH: Data-collection site on agricultural drainage canal in Hyde County, North Carolina.

HYDROLOGIC AND WATER-QUALITY DATA IN SELECTED AGRICULTURAL DRAINAGES IN BEAUFORT AND HYDE COUNTIES, NORTH CAROLINA, 1990-92

By M.W. Treece, Jr.

U.S. GEOLOGICAL SURVEY

Open-File Report 93-78

Albemarle-Pamlico Estuarine Study Report No. 93-10

Prepared in cooperation with the

DIVISION OF ENVIRONMENTAL MANAGEMENT of the

NORTH CAROLINA DEPARTMENT OF ENVIRONMENT, HEALTH, AND

NATURAL RESOURCES

Raleigh, North Carolina

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey, WRD 3916 Sunset Ridge Road Raleigh, North Carolina 27607 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Federal Center, Box 25425 Denver, Colorado 80225

CONTENTS

		P	age
Abstract			1
Introductio	n		1
Purpose	e and sco	pe	6
Acknov	vledgme	nts	6
		ata-collection sites	6
		asins	7
		basins	7
		data-collection sites	9
			10
			10
		***************************************	10
			19 19
	-		20
		ing	22
			23
	The Control of the Co	tance samples in drainage canals	23
		tance and salinity in Campbell Creek	23
		1	25
			96
		ILLUSTRATIONS	
		p	age
			"be
Figures 1	 -3. Map 	s showing:	
	1.	General location of data-collection sites	3
	2	Location of data-collection sites for Hyde County	
		drainage canals	4
	3	Location of data-collection sites for Beaufort County	
	3.	drainage canals and Campbell Creek	5
4.4	0 0		
4-1	o. Grap	hs showing relation of:	
	4.	Water levels in drainage canal upstream (site H1A) and downstream (site H1) from tide gate	12
	5.	Water levels in drainage canal upstream (site H2A) and downstream (site H2) from tide gate	13
	6	Water levels in drainage canal upstream (site H3A)	
	0.	and downstream (site H3) from tide gate	14
			30 TH TH
	7.	Water levels in drainage canal upstream (site B2A) and downstream (site B2) from flashboard riser	15

ILLUSTRATIONS--Continued

	I	age
	4-10. Graphs showing relation of:	
	Water levels in drainage canal upstream (site B3A) and downstream (site B3) from flashboard riser	16
	9. Water levels in Campbell Creek (site C1) and in upstream drainage canal (site B2)	17
	10. Water levels in Campbell Creek (site C1) and in upstream drainage canal (site B3)	18
1	1-15. Graphs showing specific conductance for 14-hour composite samples at:	
	11. Site H1	73
	12. Site H2	74
	13. Site H3	75
	14. Site B2	76
	15. Site B3	77
	TABLES	
		Page
	Description of data-collection sites	8
2.	Hydrologic data-collection network	10
3.	Precipitation at sites H2 and B3, October 1990-April 1992, and long-term average precipitation at nearby National Weather Service stations	11
4.	Maximum recorded upstream and downstream velocities in five	
	drainage canals	20
	Number of water-quality samples collected, October 1990-May 1992	21
	Conversion table for specific conductance to salinity	24
	Daily values of accumulated precipitation at site H2, October 1990-April 1992	27
8.	Daily values of accumulated precipitation at site B3, October 1990-April 1992	29
9-19.	Monthly water-level statistics at:	
	9. Site H1, October 1990-April 1992	31
	10. Site H1A, October 1990-April 1992	32
	11. Site H2, October 1990-April 1992	33
	12. Site H2A, October 1990-April 1992	34
	TO CONTROL AND THE PROPERTY OF A CONTROL OF THE PROPERTY OF TH	10074

TABLES--Continued

			Page
9-19.	Mont	thly water-level statistics at:	
	13.	Site H3, October 1990-April 1992	35
	14.	Site H3A, December 1990-April 1992	36
	15.	Site B2, October 1990-April 1992	37
		Site B2A, June 1991-April 1992	38
		Site B3, October 1990-April 1992	
		Site B3A, May 1991-April 1992	
		Site C1, October 1990-April 1992	
20-24.	Daily	mean values of discharge at:	
	20.	Site H1, October 1990-April 1992	42
	21.	Site H2, October 1990-April 1992	44
	22.	Site H3, October 1990-April 1992	46
	23.	Site B2, October 1990-February 1991	48
	24.	Site B3, October 1990-April 1992	49
25-35.	Biwe	ekly water-quality field measurements:	
	25.	And sample analyses at site H1, October 1990-May 1992	51
	26.	At site H1A, October 1990-May 1992	53
	27.	And sample analyses at site H2, October 1990-May 1992	54
	28.	At site H2A, October 1990-May 1992	56
	29.	And sample analyses at site H3, October 1990-May 1992	57
	30.	At site H3A, October 1990-May 1992	59
	31.	And sample analyses at site B2, October 1990-April 1992	60
	32.	At site B2A, May 1991-April 1992	62
	33.	And sample analyses at site B3, October 1990-May 1992	63
	34.	At site B3A, May 1991-May 1992	65
	35.	And sample analyses at site C1, October 1990-April 1992	66
36-40.	Stori	m-event sample water-quality analyses at:	
	36.	Site H1, June 22 and September 26, 1991	68
	37.	Site H2, June 21-22 and September 26, 1991	69
	38.	Site H3, June 20-22 and September 26, 1991	70
	39.	Site B2, October 26, 1990, and June 21-22, 1991	71
	40.	Site B3, October 26, 1990, and June 19-22, 1991	. 72

TABLES--Continued

		I	Page
41-46.	Vertic	cal profiles of salinity at:	
	41.	Site C1, October 1990-April 1992	78
		Site C2, November 1990-April 1992	79
	43.	Site C3, November 1990-April 1992	80
		Site C4, November 1990-April 1992	81
		Site C5, December 1990-September 1991	82
	46.	Site C6, December 1990-April 1992	83
47-56.	Daily	mean values of salinity at:	
	47.	Site C1, October 1990-May 1992	84
	48.	Site C2, October 1990-May 1992	86
	49.	Site C3, October 1990-September 1991	88
	50.	Site C4, October 1990-September 1991	89
	51.	Site C4, near surface, October 1991-May 1992	90
	52.	Site C4, near bottom, October 1991-February 1992	91
	53.	Site C5, October 1990-September 1991	92
		Site C6, October 1990-September 1991	
	55.	Site C6, near surface, October 1991-May 1992	94
	56.	Site C6, near bottom, October 1991-May 1992	95

HYDROLOGIC AND WATER-QUALITY DATA IN SELECTED AGRICULTURAL DRAINAGES IN BEAUFORT AND HYDE COUNTIES, NORTH CAROLINA, 1990-92

By M.W. Treece, Jr.

ABSTRACT

An investigation began in 1988 to (1) quantify nutrient, sediment, and freshwater inflow in canals that collect drainage from cropland field ditches, (2) determine the effects of tide gates and flashboard risers on receiving-water quality, and (3) characterize the effects of drainage on the salinity regime of a tidal creek. Data were collected in three agricultural drainage canals in Hyde County, two agricultural drainage canals in Beaufort County, and in Campbell Creek, which receives drainage directly from the Beaufort County canals. Tide gates were tested at selected sites in Hyde County, and flashboard risers were tested at selected sites in Beaufort County.

Hydrologic and water-quality data are presented in this report for the period October 1990 through May 1992 and include (1) daily values of accumulated precipitation, (2) monthly water-level statistics, (3) daily mean values of discharge in the canals, (4) biweekly water-quality field measurements and sample analyses, (5) storm-event water-quality measurements and sample analyses, (6) continuous records of specific conductance in the canals, (7) vertical profiles of salinity in Campbell Creek, and (8) daily mean values of salinity in Campbell Creek. Data collected at these sites from May 1988 through September 1990 were published in a previous U.S. Geological Survey open-file report (Treece and Bales, 1992).

INTRODUCTION

Croplands in eastern North Carolina are typically drained by an array of small ditches that feed larger collector canals emptying into creeks or other receiving waters. Flashboard risers and tide gates are two primary types of water-control structures used in field ditches in North Carolina's coastal counties to manage this drainage. The crest elevation of flashboard risers may be changed at any time by removing or adding boards to the structure. Consequently, landowners may exert some control over drainage from ditches upstream of these structures. Tide gates, on the other hand, operate solely in response to the difference between the water levels upstream and downstream from the structure. According to the design used in the Coastal Plain, tide gates open and allow drainage from upstream fields when the upstream water level exceeds the downstream water level by more than 0.2 ft (R. Woolard, U.S. Soil Conservation Service, oral commun., 1989).

In response to the need for management of runoff from agricultural lands, the North Carolina Agricultural Cost Share Program (ACSP) was implemented in 1984 in selected counties in the Coastal Plain by the North Carolina Division of Soil and Water Conservation. The purpose of the ACSP is to reduce the input of agricultural nonpoint-source pollutants into the streams, lakes, and estuaries of the State through the application of best-management practices. The ACSP provides funding for the installation of flashboard risers in ditches and canals that drain agricultural lands. Tide gates, however, are not an approved best-management practice by the ACSP because the off-site benefits of tide gates have not been well documented.

In 1988, the U.S. Geological Survey (USGS), in cooperation with the North Carolina Department of Environment, Health, and Natural Resources, began an investigation to address issues concerning artificial drainage of cropland, water-control structures, and estuarine receiving-water quality. The objectives of the investigation were to (1) quantify nutrient and sediment concentrations, and freshwater inflow to canals that collect drainage from cropland ditches, (2) determine the effects of tide gates and flashboard risers on receiving-water quality, and (3) characterize the effects of drainage on the salinity regime of a tidal creek.

Study sites were established in two locations; tide-gate sites were located in Hyde County, and flashboard-riser sites were located in Beaufort County (fig. 1). These sites were on agricultural drainage canals that receive land-surface drainage from upland field ditches. Also, data were collected in Campbell Creek, which receives drainage from two Beaufort County canals.

A tide gate was installed in one of the Hyde County canals upstream of site H1 (fig. 2) in May 1988; tide gates were installed in the remaining Hyde County canals upstream of sites H2 and H3 in August 1990. State funds were appropriated for the installation of the tide gates. Tide gates were installed by the landowners with assistance from the Hyde County Soil and Water Conservation District.

A flashboard riser was installed in one of the Beaufort County canals upstream of site B1 (fig. 3) in July 1988; flashboard risers were installed in the remaining canals upstream of sites B2 and B3 in April 1991. Installation of flashboard risers was funded cooperatively by the landowner and the ACSP. Flashboard risers were installed by the landowners with assistance from the Beaufort County Soil and Water Conservation District.

Data collected from May 1988 through September 1990 were published in an open-file report by the U.S. Geological Survey (Treece and Bales, 1992). Data collection at site B1 was discontinued on September 30, 1990, because there were frequent periods of no flow in the canal and because the canal was subject to severe scouring during high-flow periods, which limited collection of meaningful data. Data collection continued at the other Hyde and Beaufort County sites through May 1, 1992.

ω

Figure 1.--General location of data-collection sites.

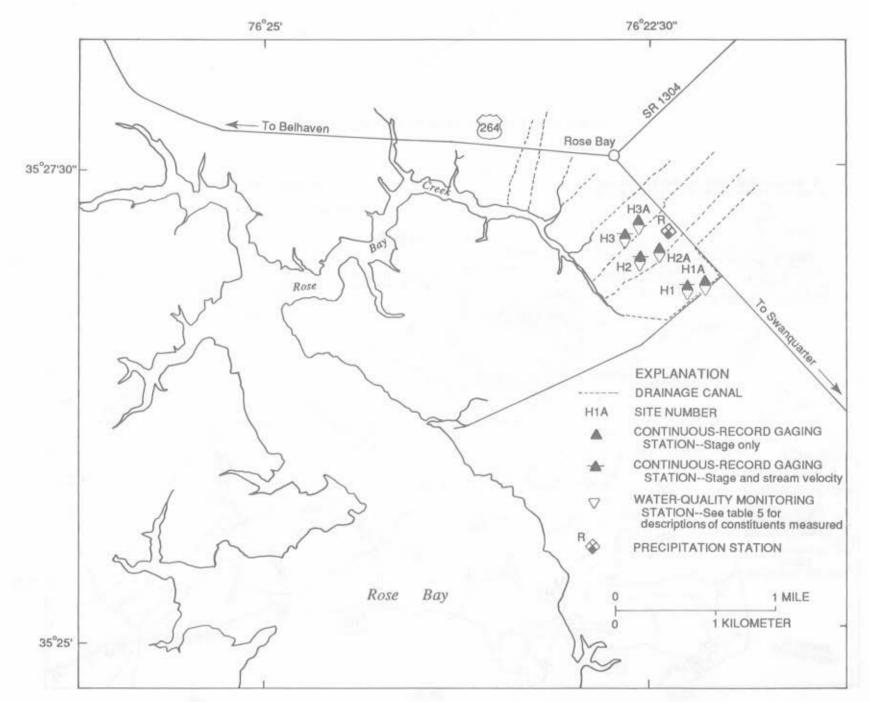


Figure 2.--Location of data-collection sites for Hyde County drainage canals.

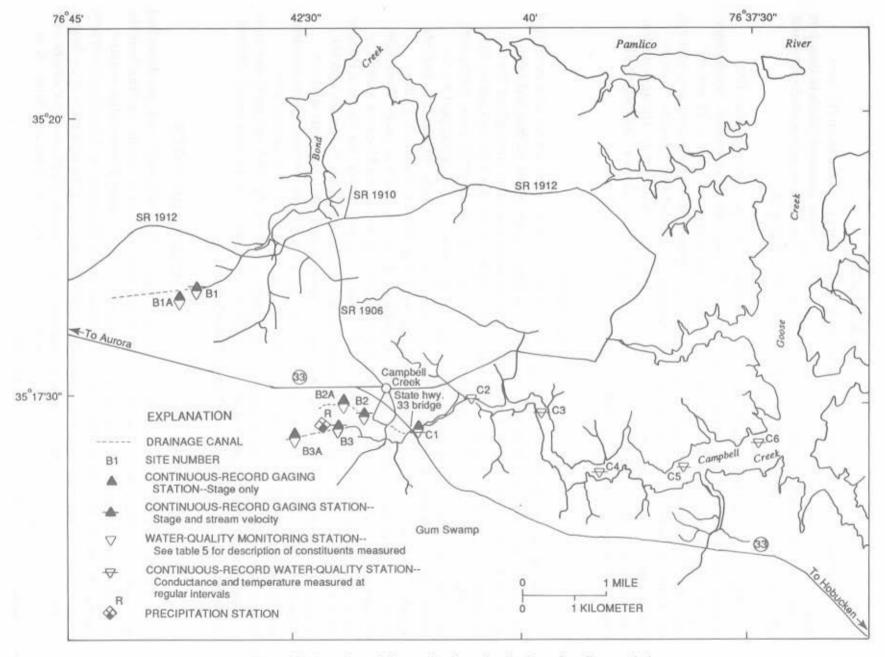


Figure 3.--Location of data-collection sites for Beaufort County drainage canals and Campbell Creek.

Purpose and Scope

This report provides hydrologic and water-quality data collected from (1) three agricultural drainage canals in Hyde County, (2) two agricultural drainage canals in Beaufort County, and (3) Campbell Creek, North Carolina (fig. 1). Descriptions of the study sites and data-collection procedures are followed by data tables and graphs.

Hydrologic and water-quality data are presented for the period of October 1990 through May 1992 when the tide gates and flashboard risers were in operation. Hydrologic data include precipitation, water-level, and stream-velocity data recorded at 15-minute intervals. Water-quality data include physical properties measured in the field and nutrient and sediment concentrations measured biweekly and for selected storm events. Specific conductance and water temperature were measured at regular intervals for the agricultural basins and daily at Campbell Creek sites. Specific-conductance values at the Campbell Creek sites were converted to salinity values.

Acknowledgments

The author gratefully acknowledges the cooperation of the landowners who permitted the study sites to be located on their property. The landowners provided free and open access to the property, farming-practice data, and valuable assistance throughout the investigation. Cooperating landowners are: Mr. Sydney Credle, Mr. Charlie Godley, Mr. David O'Neal, Mr. Hiram Paul, and Mr. Kelly Williams. Mr. David O'Neal was particularly instrumental in identifying Hyde County sites and in maintaining local support for the investigation. Mr. Rufus Croom, Mr. James T. Etheridge, Mr. Michael W. Harriett, and Mr. Rodney Woolard, of the U.S. Soil Conservation Service, assisted in identifying sites, developing and maintaining local contacts, and providing technical guidance. The Hyde County Soil and Water Conservation District was also responsible for blocking a ditch to hydraulically separate two of the basins. Mr. James R. Cummings and Ms. Patricia Hooper (North Carolina Division of Soil and Water Conservation), Ms. Elizabeth McGee and Mr. Jimmie R. Overton (North Carolina Division of Environmental Management), and Mr. Thomas W. Ellis (North Carolina Department of Agriculture) were instrumental in initiating and developing continuing support for the investigation. This study was begun in cooperation with the Albemarle-Pamlico Estuarine Study of the North Carolina Department of Environment, Health, and Natural Resources and has continued in cooperation with the Department's Division of Environmental Management.

STUDY BASINS AND DATA-COLLECTION SITES

The Hyde and Beaufort County study basins, including Campbell Creek, are described in this section. The study basins lie in the Coastal Plain Province of North Carolina near the mouth of the Pamlico River (fig. 1). The Pamlico River is a drowned river-valley estuary characterized by daily mean water-level fluctuations of less than a foot and salinities from near zero to about 20 ppt (parts per thousand) (Bales, 1990). Because of the proximity of the basins to the Pamlico River and Pamlico Sound, and because the bottom of the canal that drains each basin is near or below mean sea level, water level and water quality in the canals are often affected by downstream estuarine conditions.

The climate of the region is mild and moderately moist. The mean annual temperature is about 15.5 °C, and mean annual precipitation is about 52 in. (Hardy and Hardy, 1971). Variability in annual precipitation totals is large, ranging from 35 to 80 in., but average monthly precipitation is relatively uniform throughout the year, with slightly higher amounts typically occurring during the late summer months of July, August, and September. Evapotranspiration rates average about 34 in/yr (inches per year) and exhibit much less variability from year to year than precipitation (Wilder and others, 1978). Average wind speeds are about 10 mi/hr (miles per hour). Winds typically blow from south to southwest between April and August, and from north to northwest between September and February; there is no prevailing wind direction during March (Garrett and Bales, 1991).

Hyde County Basins

The three Hyde County study basins, located near the community of Rose Bay, are drained by adjacent, parallel drainage canals (fig. 2). The data-collection sites are all less than 2,000 ft from the confluence of the drainage canals with Rose Bay Creek, a tidal creek draining to Rose Bay. The basins range in size from 70 to 140 acres (table 1) and are characterized by highly productive mineral soils, which are used to grow winter wheat and soybeans in rotation (R. Woolard, U.S. Soil Conservation Service, oral commun., 1988). All runoff within each basin is by way of surface drainage to ditches and subsequently to the canals in which the data-collection installations are located. The canals at sites H2 and H3 are about 13 ft wide at the top and about 4 ft deep. The drainage canal at site H1 is about 9 ft wide and 2 ft deep but was not as well maintained as at sites H2 and H3.

Data were collected downstream from tide gates at sites H1, H2, and H3 to determine nutrient and sediment concentrations and to quantify the effects of tide gates on downstream receiving-water quality. In July 1988, a tide gate was placed in the canal about 100 ft upstream of site H1. The tide gate was installed by the landowner, with assistance from the Hyde County Soil and Water Conservation District. Following more than 2 years of data collection at sites H1, H1A, H2 and H3, tide gates were installed in the canals upstream of sites H2 and H3 in August 1990. Gages were then installed at sites H2A and H3A (fig. 2) about 15 ft upstream of the tide gates to record water levels at 15-minute intervals. Specific conductance was also measured biweekly upstream of the tide gates at sites H1A, H2A, and H3A. Data were collected for about 2 additional years at all six sites.

Beaufort County Basins

The two Beaufort County agricultural basins are located near the community of Campbell Creek, 5 mi east of Aurora (fig. 3) and about 20 mi southwest of the Hyde County basins. The basins are similar in size to the Hyde County basins (table 1). Soils within the basins are loams and fine sandy loams. The basins are used exclusively for row crops (corn, milo, soybeans, potatoes, and winter wheat). All runoff within each basin is by way of surface drainage, but there is a more extensive network of surface-drainage ditches in the Beaufort County basins than in the Hyde County basins (fig. 2).

Initially, data were collected in an agricultural drainage canal (site B1) that drains into Bond Creek (fig. 3). The support structure for flashboard risers was installed in the canal

upstream of site B1 in 1989 by the landowner in cooperation with the Beaufort County Soil and Water Conservation District. However, meaningful data were scarce because of several limiting physical factors, such as frequent and prolonged periods of dry canal conditions and an unstable channel. Therefore, data collection was discontinued at this site September 30, 1990.

Table 1 .-- Description of data-collection sites

Site number (figs.	USGS			A	Approxima drainage area	
2 and 3)	number ¹	County	Latitude	Longitude	(acres)	Description
H1	0208458600	Hyde	35°26'44"	76°22'25"	70	Drainage canal, 100 ft downstream from tide gate
H1A	0208458600	Hyde	35°26'48"	76°22'18"	70	Drainage canal, 15 ft upstream of tide gate
H2	0208458700	Hyde	35°26'57"	76°22'37"	140	Drainage canal, 90 ft downstream from tide gate
H2A	0208458700	Hyde	35°26'59"	76°22'34"	140	Drainage canal, 15 ft upstream of tide gate
H3	0208458800	Hyde	35°27′01"	76°22'49"	104	Drainage canal, 800 ft downstream from tide gate
H3A	0208458800	Hyde	35°27'06"	76°22'43"	104	Drainage canal, 15 ft upstream of tide gate
B1	0208455130	Beaufort	35°18'41"	76°43'28"	93	Drainage canal, 100 ft downstream from flashboard riser. No data collected during the period covered by this report
B1A	0208455130	Beaufort	35°18'44"	76°43'35"	93	Drainage canal, 75 ft upstream of flashboard riser. No data collected during the period covered by this report
B2	0208455143	Beaufort	35°17'20"	76°41'45"	47	Drainage canal, 150 ft downstream from flashboard riser
B2A	0208455143	Beaufort	35°17'23"	76°41'46"	47	Drainage canal, 15 ft upstream of flashboar riser
В3	0208455141	Beaufort	35°17'10"	76°41'50"	68	Drainage canal, 600 ft downstream from flashboard riser
ВЗА	0208455141	Beaufort	35°17′08"	76°41'50"	68	Drainage canal, 45 ft upstream of flashboard riser
C1	0208455145	Beaufort	35°17'13"	76°41'13"	5,120	Receiving stream for sites B2 and B3
C2	0208455165	Beaufort	35°17'30"	76°40'33"	6,342	Receiving stream, downstream from site Cl
C3	0208455175	Beaufort	35°17'25"	76°39'48"	7,501	Receiving stream, downstream from site Ca
C4	0208455195	Beaufort	35°16'55"	76°39'12"	9,306	Receiving stream, downstream from site C:
C5	0208455205	Beaufort	35°17'00"	76°38'12"	10,835	Receiving stream, downstream from site Co
C6	0208455220	Beaufort	35°17'12"	76°37'23"	12,755	Receiving stream, downstream from site C5 at mouth of Goose Creek

¹U.S. Geological Survey downstream order identification number.

Sites B2 and B3 (fig. 3) are on adjacent canals that drain directly to Campbell Creek. Sites B2 and B3 are about 2,000 ft upstream of Campbell Creek. The area between the data-collection sites and Campbell Creek is forested, and no additional ditches or canals drain to the two canals

between the data-collection sites and Campbell Creek. The canals at sites B2 and B3 are each about 12 ft wide. At site B2, the canal is 3 ft deep; at site B3, the canal is 4 ft deep.

Data were collected downstream from flashboard risers at sites B2 and B3 and in Campbell Creek at site C1 to determine nutrient and sediment concentrations and to quantify the effects of flashboard risers on downstream receiving-water quality. Following about 3 years of data collection at sites B2 and B3, flashboard risers were installed in the canals upstream of sites B2 and B3 in April 1991. The flashboard risers were installed by landowners with assistance from the Beaufort County Soil and Water Conservation District. Gages were then installed at sites B2A and B3A (fig. 3) upstream of flashboard risers where water levels were recorded at 15-minute intervals and specific conductance was measured biweekly. Site B2A was placed about 15 ft upstream of riser, and site B3A was placed about 45 ft upstream of riser. Data collection at sites B2, B2A, B3, and B3A continued until May 1992.

Campbell Creek Data-Collection Sites

Upstream of the State Highway 33 bridge, Campbell Creek drains a 5,120-acre (8-mi ²) wetland area known as Gum Swamp (fig. 1, table 1). There is very little agricultural land in the Campbell Creek watershed upstream of the State Highway 33 bridge. With the exception of the canals that drain sites B2 and B3, only one other agricultural drainage canal is known to drain to Campbell Creek upstream of the State Highway 33 bridge.

Between the State Highway 33 bridge and the confluence of Campbell Creek with Goose Creek (fig. 3), an additional 7,610 acres (11.9 mi ²) drain to Campbell Creek, comprising a total drainage area of 12,700 acres (19.9 mi ²) for the entire Campbell Creek watershed. The distance along the axis of the creek from the State Highway 33 bridge to the mouth of the creek is about 5 mi. Land use in the lower part of the Campbell Creek basin is a mixture of agriculture (primarily row crops) and forested wetlands.

Data were collected in Campbell Creek to (1) characterize the salinity regime of the tidal creek, including the effects of freshwater drainage and effects of flashboard risers on salinity, and (2) evaluate the effects of flashboard risers on receiving-water nutrient concentrations. Data were collected at six sites (C1-C6) on Campbell Creek (fig. 3). A continuous-recording gaging station (C1) was located on the right bank at the State Highway 33 bridge to record water levels, specific conductance, and water temperature at 15-minute intervals. Specific conductance and water temperature were measured at 30-minute intervals at sites C2-C6, which were placed equidistantly along a longitudinal axis from C1 to the mouth of Campbell Creek.

Additional data are available that were collected as part of another investigation in Goose Creek, 3.5 mi downstream from the confluence with Campbell Creek (Garrett and Bales, 1991; Garrett, 1992) (fig. 3). Water level, specific conductance, water temperature, and dissolved-oxygen concentrations were recorded at 15-minute intervals. Although not presented in this report, these data may be useful in characterizing the salinity regime of Campbell Creek.

HYDROLOGIC DATA

Hydrologic records collected at the Hyde and Beaufort County sites and in Campbell Creek are summarized in table 2. Hyde County site locations are shown in figure 2; the Beaufort County and Campbell Creek site locations are shown in figure 3.

Table 2.-- Hydrologic data-collection network
[--, no data]

Site		ement type val (in min			Period
figs. 2 and 3)	Precipi- tation	Water level	Stream velocity	Discharge	of record
H1	Her.	15	15	Periodically	May 1988-April 1992
H1A	(mm)	15			October 1988-April 1992
H2	15	15	15	Periodically	May 1988-April 1992
H2A	15	15		**	October 1990-April 1992
H3		15	15	Periodically	May 1988-April 1992
H3A		15			December 1990-April 1992
B2		15	15	Periodically	May 1988-April 1992
B2A		15		**	June 1991-April 1992
B3	15	15	15	Periodically	May 1988-April 1992
B3A	15	15			May 1991-April 1992
C1	920	15	-		May 1988-April 1992

Precipitation

Precipitation was recorded at 15-minute intervals at sites H2 and B3 (table 2). Precipitation data from the National Weather Service station at New Holland, 12 mi east of site H2, were used to compare precipitation measurements at site H2 with long-term averages and to estimate missing daily precipitation values at this site. Likewise, data from the National Weather Service station at New Bern, about 25 mi southwest of site B3, were used to compare precipitation measurements at site B3 with long-term averages and to estimate missing daily precipitation values at this site (table 3). A comparison of observed precipitation and long-term average values indicates that the period from October 1990 through April 1992 was drier than normal (table 3).

Water Levels

Water levels were recorded at 15-minute intervals at each site in the five drainage canals and at Campbell Creek (site C1) (table 2). All water levels were referenced to sea level, and datums were checked annually.

The relation of water levels upstream (sites H1A, H2A, and H3A) and downstream (sites H1, H2, and H3) during tide-gate operation is shown in figures 4-6. The relation of water levels upstream (sites B2A and B3A) and downstream (sites B2 and B3) during operation of flashboard risers is shown in figures 7 and 8. The relation of water levels at sites B2 and B3 and in Campbell Creek (site C1), which receives drainage from the canals on which sites B2 and B3 are located, is presented in figures 9 and 10.

Table 3.--Precipitation at sites H2 and B3, October 1990-April 1992, and long-term average precipitation at nearby National Weather Service stations

					Precipitation	n, in inches			
Year	Month	Observed at site H2	Long-term average at New Holland	Difference	Cumu- lative difference	Observed at site B3	Long-term average at New Bern	Difference	Cumu- lative difference
1990	October	4.48	3.90	+0.58	+0.58	6.19	3.39	+2.80	+2.80
	November	2.65a	3.70	-1.05	47	4.92	3.08	+1.84	+4.64
	December	2.10	3.35	-1.25	-1.72	1.98 ^b	3.69	-1.71	+2.93
1991	January	6.24	4.20	+2.04	+.32	7.68 ^b	4.01	+3.67	+6.60
	February	.64	3.87	-3.23	-2.91	2.38	3.97	-1.59	+5.01
	March	6.78	3.61	+3.17	+.26	3.41	3.62	21	+4.80
	April	2.78	3.31	53	27	5.93	2,98	+2.95	+7.75
	May	.87ª	4.21	-3.34	-3.61	3.46	4.41	95	+6.80
	June -	3.22	4.37	-1.15	-4.76	5.47	5.13	+.34	+7.14
	July	5.96	6.04	08	-4.84	5.59	6.75	-1.16	+5.98
	August	6.77	6.36	+.41	-4.43	4.44	6.33	-1.89	+4.09
	September	3.28	5.62	-2.34	-6.77	3.79	5.75	-1.96	+2.13
	October	2.06	3,90	-1.84	-8.61	3.42	3.39	+.03	+2.16
	November	2.17	3.70	-1.53	-10.14	1.52	3.08	-1.56	+.60
	December	4.14	3.35	+.79	-9.35	3.19	3.69	50	+.10
1992	January	3.17	4.20	-1.03	-10.38	6.95	4.01	+2.94	+3.04
	February	1.75	3.87	-2.12	-12.5	.76	3.97	-3.21	12
	March	3.36	3.61	25	-12.75	3.48	3.62	14	-,26
	April	1.78	3.31	-1.53	-14.28	.59	2.98	-2.39	-2.65

^aMonthly total includes some daily values estimated from New Holland observations.

^bMonthly total includes some daily values estimated from New Bern observations.

WATER YEAR 1991

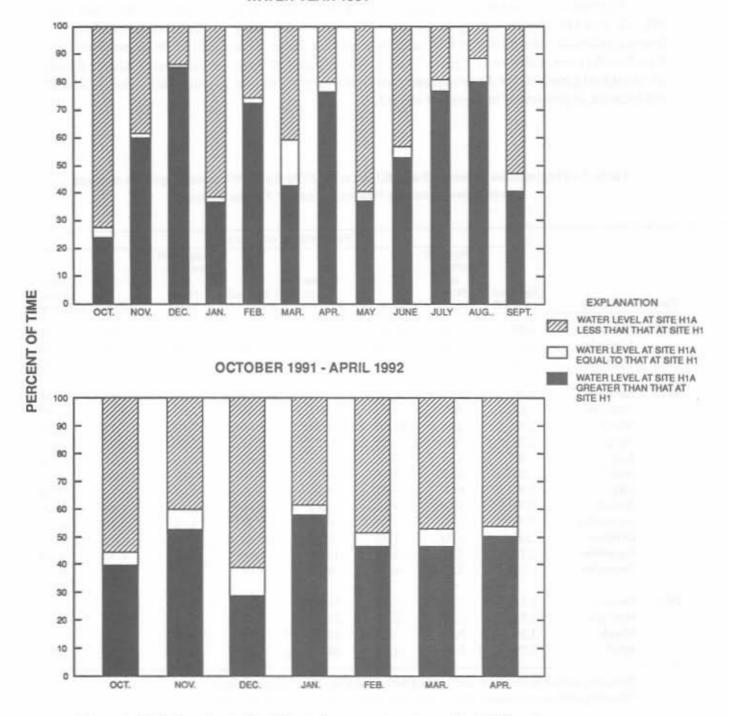


Figure 4.--Relation of water levels in drainage canal upstream (site H1A) and downstream (site H1) from tide gate.

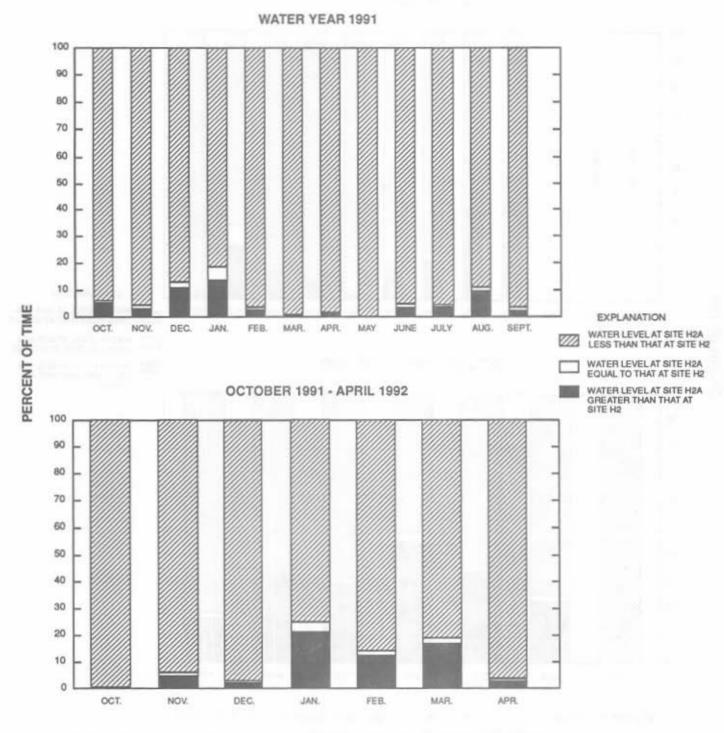


Figure 5.--Relation of water levels in drainage canal upstream (site H2A) and downstream (site H2) from tide gate.

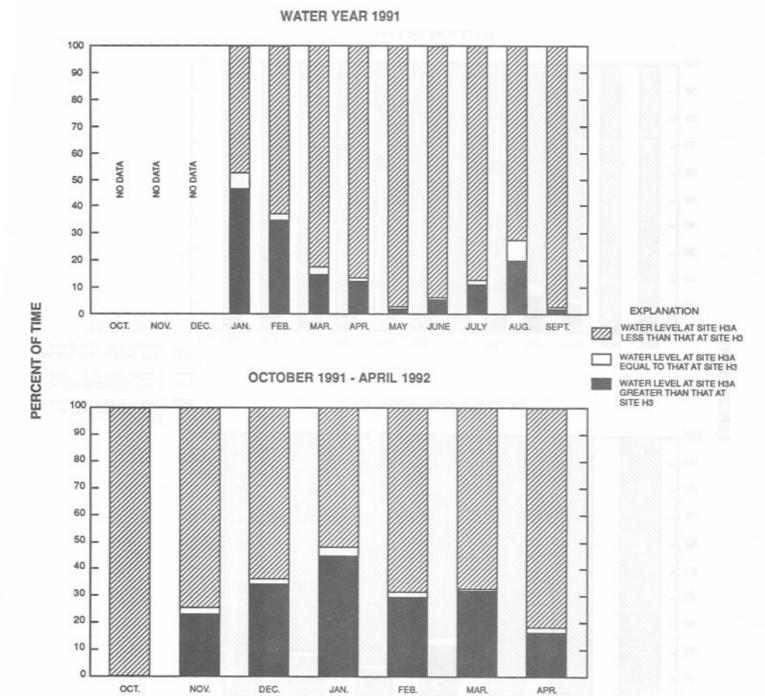


Figure 6.--Relation of water levels in drainage canal upstream (site H3A) and downstream (site H3) from tide gate.

MAY - SEPTEMBER 1991 100

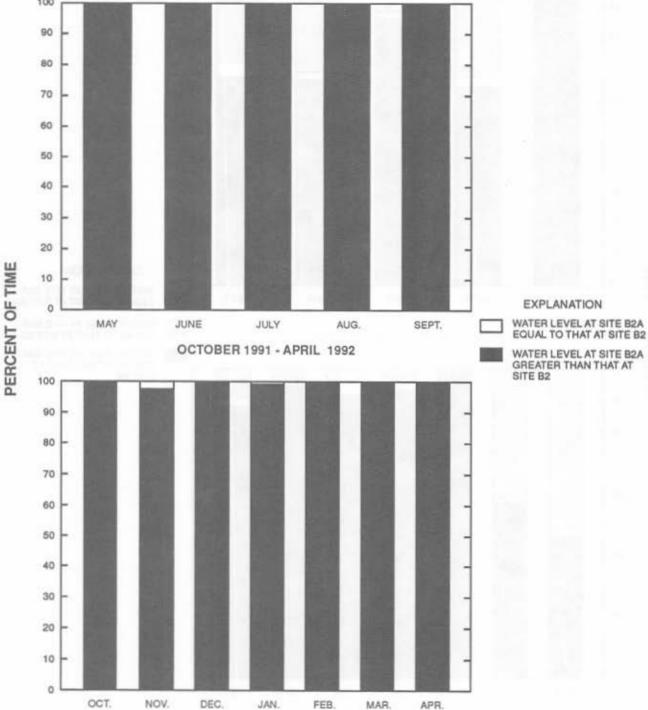


Figure 7.--Relation of water levels in drainage canal upstream (site B2A) and downstream (site B2) from flashboard riser.

MAY - SEPTEMBER 1991

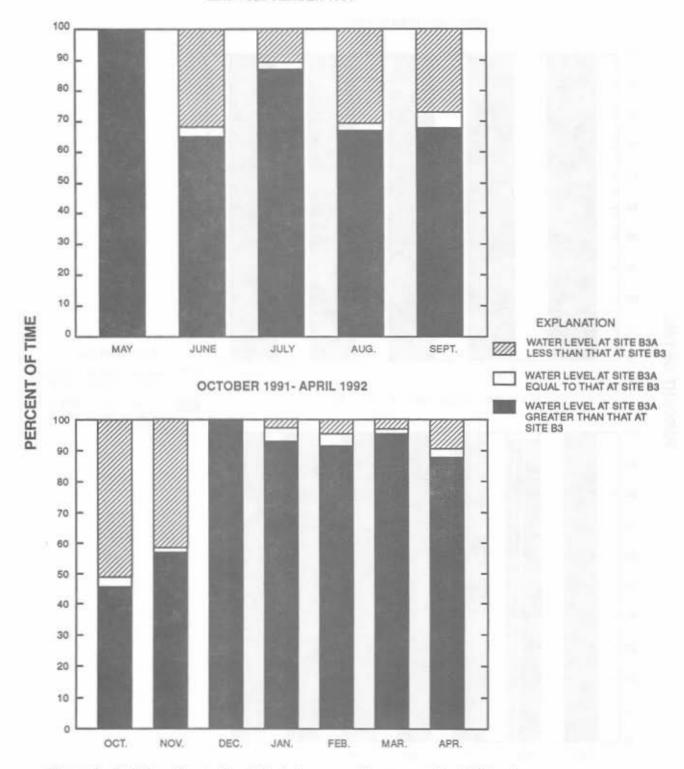


Figure 8.--Relation of water levels in drainage canal upstream (site B3A) and downstream (site B3) from flashboard riser.

WATER YEAR 1991 100 90 80 70 60 50 40 30 20 10 PERCENT OF TIME EXPLANATION DEC. JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. WATER LEVEL AT SITE B2 LESS THAN THAT AT SITE C1 WATER LEVEL AT SITE C1 EQUAL TO THAT AT SITE B2 WATER LEVEL AT SITE B2 GREATER THAN THAT AT SITE C1 OCTOBER 1991 - APRIL 1992 100 90 80 70 60 50 40 30 20

Figure 9.--Relation of water levels in Campbell Creek (site C1) and in upstream drainage canal (site B2).

JAN.

10

0

OCT.

NOV.

DEC.

FEB.

MAR.

APR.

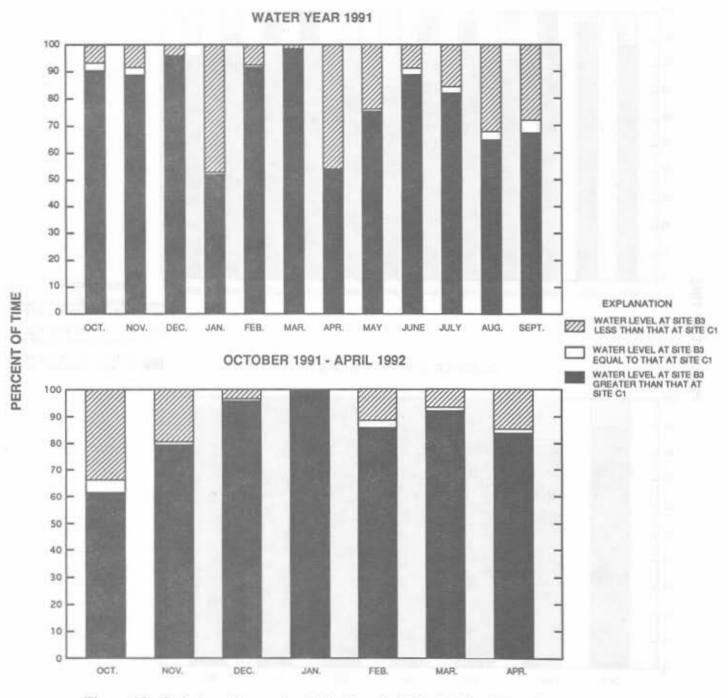


Figure 10.--Relation of water levels in Campbell Creek (site C1) and in upstream drainage canal (site B3).

Water levels downstream from tide gates at sites H2 and H3 were greater than water levels upstream of tide gates 92 and 77 percent of the time, respectively. Tide gates were effective in preventing saltwater from entering field ditches upstream of the tide gates. Water levels downstream from flashboard risers at sites B2 and B3 were less than upstream water levels 99.7 and 80 percent of the time, respectively. Water levels at sites B2 and B3 were greater 92 and 81 percent of the time, respectively, than water levels at site C1 (figs. 9 and 10), which represent the percentages of time water was moving downstream from the canal sites to Campbell Creek.

Stream Velocity

Standard stream-gaging techniques using a weir and a stage-discharge relation were not suitable at most of the study sites for three reasons: (1) movement of water in these canals occurs in two directions--downstream, as a result of land-surface drainage, and upstream, as a result of tidal action; (2) the weir will typically become submerged and nonfunctional during periods of extremely high water levels resulting from streamflow or increases in tidal elevation; and (3) the weir itself may act as a water-control structure by storing water in the canal upstream of the weir. This storage could potentially change the streamflow volume and water quality from what might occur without the weir. Consequently, stream velocity and channel cross-sectional area were used to compute discharge.

A continuous record of stream velocity (magnitude and direction) was obtained in each of the drainage canals using Marsh-McBirney¹ bi-directional electromagnetic velocity meters. The meter sensor, which is about 10 in. long and 1 in. in diameter, was mounted to extend horizontally and perpendicular to the flow. The meter was controlled by an electronic datalogger, which was programmed to turn on the meter and make 30 measurements during a 15-minute interval. These measurements were averaged to provide a mean velocity for the interval, which was stored in the datalogger. During biweekly visits to the sites, the data loggers were downloaded, and field measurements of velocity were made with a Price AA optic-current meter or a Marsh-McBirney MDL 201 current meter and compared to the electromagnetic velocity meter readings to ensure meter calibration and determine appropriate data corrections. The maximum velocity magnitudes recorded at each of the five velocity-monitoring sites (table 2) are shown in table 4.

Discharge

Discharge was computed for each canal in the following manner. First, the relation between water level (stage) and cross-sectional area was determined from measurements in each canal. The stage-area relation is for the cross section at which the velocity-meter probe was located. Next, discharge measurements (about 15 measurements in each canal) were made for different flow and water-level conditions. Using the average stream velocity for the cross section (measured flow divided by total area) determined from the discharge measurements and the point velocity measured by the bi-directional electromagnetic velocity meter at the

¹Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey.

time of the discharge measurements, a relation between measured point velocity and average velocity was developed for each canal. The relation between point velocity and average velocity was checked throughout the study period by making additional discharge measurements in the canal.

Table 4.--Maximum recorded upstream and downstream velocities in five drainage canals

[ft/s, foot per second; --, missing data]

		Maximum stream velocities									
	Water	year 1991	Water year 1992								
Site	Upstream flow (ft/s)	Downstream flow (ft/s)	Upstream flow (ft/s)	Downstream flow (ft/s)							
H1	-0.01	0.14	-0.02	0.03							
H2	05	.06	02	.03							
H3	19	.12	03	.03							
B2	10	.31	12								
B3	07	.09	04	.04							

Discharge was then determined by (1) using measured water level to obtain a cross-sectional area, (2) using measured point velocity to obtain a cross-sectionally averaged velocity, and (3) multiplying cross-sectional area by cross-sectionally averaged velocity to obtain an instantaneous discharge. Flows were calculated at 15-minute intervals and averaged for a 24-hour period to obtain daily means.

Discharge record is dependent on accurate and continuous water-level and stream-velocity data; therefore, periods of discharge record may be missing as a result of missing water-level or velocity data. Stream-velocity data are missing whenever the water level in canals declined below the elevation of the velocity probe. Other periods of missing water-level or velocity data occurred as a result of instrument malfunction.

WATER-QUALITY DATA

Water-quality records were collected at the Hyde County sites (fig. 2), the Beaufort County sites (fig. 3), and in Campbell Creek (fig. 3). Data collection included routine, biweekly measurements and storm-event sampling. In addition, water samples at each canal site were continuously collected and composited to determine specific conductance. A summary of the water-quality sample collection is listed in table 5.

Standard USGS procedures for the collection and analysis of water-quality samples were followed. Procedures for the collection of field data, maintenance of instrumentation, and processing of data also were developed for the specific instrumentation and conditions of this

Table 5.--Number of water-quality samples collected, October 1990-May 1992

							Measurem	ent inter	/al								
	14 hours ¹						Biwee	kly						Oct. 26, 1990	June 19-22, 1991	Sep 26 199	
Site (figs. 2 and 3)	Specific conduc- tance	Specific conduc- tance	рН	Water temper- ature	Dis- solved oxygen	Baro- metric pres- sure	Total nitrogen, NO ₂ + NO ₃	Total ammo- nia		Total, nitrogen ammonia + organic	Total phos- phorus	Total phos- phorus, ortho	hos- pended orus, sedi- Storr		orm-ever	rm-event ² amples	
H1	751	35	35	35	35	35	35	35	35	35	35	35	35	0	8	1	
H1A	0	33	0	33	0	35	0	0	0	0	0	0	0	0	0	0	
H2	410	35	35	35	35	35	35	35	35	35	35	35	35	0	4	1	
H2A	0	35	0	35	0	35	0	0	0	0	0	0	0	0	0	0	
НЗ	583	35	35	35	35	35	35	35	35	35	35	35	35	0	8	1	
Н3А	0	34	0	34	0	35	0	0	0	0	0	0	0	0	0	0	
В2	582	34	34	34	34	34	34	34	34	34	34	34	34	7	4	0	
B2A	0	22	0	22	0	34	0	0	0	0	0	0	0	0	0	0	
В3	540	33	33	33	33	33	33	33	33	33	33	33	33	7	7	0	
вза	0	22	0	22	0	33	0	0	0	0	0	0	0	0	0	0	
C1	0	32	33	30	34	34	34	34	34	34	34	34	34	0	0	0	

¹Composite sample consisting of five discrete samples collected at about 3-hour intervals, ²Storm-event samples analyzed for total nutrient and suspended-sediment concentrations.

study. These procedures are documented in an unpublished quality-assurance manual that was prepared as part of this investigation (R.G. Garrett, U.S. Geological Survey, written commun., 1990).

Biweekly Sampling

Field measurements of specific conductance, pH, water temperature, barometric pressure, and dissolved-oxygen concentration were made at sites in the five drainage canals downstream from water-control structures and at site C1 at approximately biweekly intervals. Measurements of specific conductance and water temperature also were made upstream of the water-control structures at sites H1A, H2A, H3A, B2A, and B3A.

Field meters were calibrated at the beginning of each day of use. Field instruments used were the Yellow Springs Instrument Company Model 33 S-C-T meter for specific conductance, the Beckman 11 pH meter, a Thommen barometer, and the Yellow Springs Instrument Company Model 54 dissolved-oxygen meter. The specific conductance, pH, and dissolved-oxygen meters are capable of measuring temperature. The temperatures of collected samples were measured with the specific-conductance meter so that conductance values could be adjusted to 25 °C. The dissolved-oxygen meter was used to measure water temperature in the canals at a 1-ft depth.

Specific-conductance standards were used to develop a calibration curve for the conductance meter. Field meter readings were within 5 percent of the standards after calibration. The pH meter was calibrated using standard solutions; after calibration, meter readings were within 0.2 pH units of the standards. Temperature thermistors were calibrated against an American Society for Testing Materials thermometer at two temperatures. All values were within 0.5 °C after calibration. The barometer was calibrated annually against a National Weather Service barometer. The dissolved-oxygen meter was calibrated in water-saturated air after adjustment for barometric pressure. After calibration, the meter readings were within 0.1 mg/L (milligram per liter) of the saturation value at the measured temperature and pressure. The dissolved-oxygen calibration was for freshwater. Samples of unknown specific conductance and pH prepared by the USGS's National Water-Quality Laboratory in Denver were analyzed annually and checked against the laboratory's measurements to ensure accuracy of field meters.

Manually collected samples were obtained at biweekly intervals at all sites in the five drainage canals and at site C1 (table 5). Samples were collected using the equal-width increment (EWI) method (Edwards and Glysson, 1988), which requires equal spacing of subsamples across the cross section of the canal or creek, and an equal transient rate, both up and down, in all subsamples. Samples were collected for analysis of specific conductance, pH, nutrient concentrations, and suspended-sediment concentrations. Samples collected for nutrients were immediately composited, stored in opaque brown bottles, preserved with mercuric chloride, and placed on ice.

Nutrient samples were analyzed for concentrations of total nitrite plus nitrate as nitrogen, total Kjeldahl nitrogen, total phosphorus, and total orthophosphate. Nutrient

analyses were performed in the USGS's National Water-Quality Laboratory in Denver using methods described by Fishman and Friedman (1985). Suspended-sediment concentrations were determined in the USGS's Raleigh, N.C., sediment laboratory using procedures documented by Guy (1969).

Event Sampling

To document water quality during high-flow events in drainage canals, samples were collected at sites downstream from water-control structures at time intervals of between 30 and 60 minutes during two storm events and once near peak water level for a third storm event (table 5). Event samples were not collected in Campbell Creek.

Event samples were collected using the Instrumentation Specialty Company (ISCO) model 2700 pumping sampler with fixed intake. The sampler intake was located near the center of the canal and about 0.5 ft above the bottom of the canal. Samples also were collected manually to ensure that automatically collected point samples were representative of conditions throughout the sampled transect. Results indicate that flow in these five canals is well mixed; there were only slight differences between automatically collected samples and samples collected by depth integration at three equally spaced locations across the canal. This is probably a result of the small cross-sectional area of flow and long, straight approaches with uniform geometry upstream of the sampling site.

Samples were retrieved from the sampler within 24 hours of sample collection, stored in opaque bottles, preserved with mercuric chloride, and placed on ice. Samples were analyzed for the same constituents as the biweekly, manually collected samples (table 5).

Specific-Conductance Samples in Drainage Canals

Because of the potential for crop damage and the loss of soil productivity, the upstream movement of saltwater in drainage canals is a major concern for farmers having low-lying fields near estuarine waters. Salinity may change quickly in the drainage canals in response to upland drainage and to downstream estuarine conditions. Specific conductance, as an indicator of salinity, was measured in the monitored canals.

Water samples were collected automatically in each of the monitored canals downstream from water-control structures using the ISCO Model 2700 automatic water samplers. Each 500 mL (milliliter) sample represented conditions during a 14-hour period and was the composite of five 100 mL samples collected at approximately 3-hour intervals. During biweekly visits to the sites, the sample bottles were replaced with clean empty bottles. The samples were then returned to the laboratory for measurement of specific conductance, and the bottles were cleaned and stored. These specific conductance values are shown as graphs in figures 11-15 on pages 73-77 of this report.

Specific Conductance and Salinity in Campbell Creek

Measurements of specific conductance and temperature were made at six locations along the longitudinal axis of Campbell Creek (fig. 3). Instrument sensors were located at

approximately mid-depth in the creek. Data were collected and recorded at 30-minute intervals at sites C2-C6 and at 15-minute intervals at site C1. Because specific conductance in Campbell Creek was higher than in the drainage canals, specific conductance at sites C1-C6 was converted to salinity using a conversion rating (table 6) (Miller and others, 1988) and is presented as such in this report.

Table 6.--Conversion table for specific conductance to salinity

[μS/cm, microsiemens per centimeter at 25 degrees Celsius; ppt, parts per thousand]

Specific conductance (µS/cm)	Salinity (ppt)	Specific conductance (µS/cm)	Salinity (ppt)
0	0.00	15,000	8.71
500	.23	15,500	9.03
1,000	.47	16,000	9.34
1,500	.74	16,500	9.65
2,000	1.00	17,000	9.97
2,500	1.27	17,500	10.29
3,000	1.55	18,000	10.62
3,500	1.82	18,500	10.94
4,000	2.10	19,000	11.26
4,500	2.38	19,500	11.59
5,000	2.67	20,000	11.91
5,500	2.95	20,500	12.23
6,000	3.24	21,000	12.56
6,500	3.54	21,500	12.89
7,000	3.83	22,000	13.21
7,500	4.13	22,500	13.54
8,000	4.42	23,000	13.87
8,500	4.71	23,500	14.20
9,000	5.01	24,000	14.53
9,500	5.31	24,500	14.86
10,000	5.62	25,000	15.19
10,500	5.92	25,500	15.53
11,000	6.23	26,000	15.86
11,500	6.54	26,500	16.20
12,000	6.84	27,000	16.54
12,500	7.15	27,500	16.87
13,000	7.45	28,000	17.21
13,500	7.77	28,500	17.54
14,000	8.08	29,000	17.88
14,500	8.40	29,500	18.22

At site C1, a USGS minimonitor equipped with two sensors was used to record temperature and conductance at 15-minute intervals. The minimonitor consists of (1) a water-tight can (about 14.5 in. high by 10.5 in. in diameter) containing signal conditioners, (2) cables with waterproof connectors, (3) water-quality sensors, and (4) a 12-volt battery (Garrett and Bales, 1991). The minimonitor is also controlled by a datalogger, which is programmed to turn on the minimonitor at 15-minute intervals, collect the data from the sensors, record the time, and turn off the minimonitor. The datalogger stores the data, which are downloaded biweekly during routine field trips.

At five of the Campbell Creek data-collection sites (C2-C6), a Hydrolab DataSonde I (DSI) was used to measure and record temperature and conductance at 30-minute intervals. The DSI is a submersible, fully self-contained unit capable of measuring and recording temperature and specific conductance. The DSI has a temperature range of -2 to 50 $^{\circ}$ C with a calibrated accuracy of ± 0.1 $^{\circ}$ C. The selectable specific-conductance ranges are from 0-1,500, 0-15,000, and 0-150,000 μ S/cm (microsiemens per centimeter at 25 degrees Celsius); calibrated accuracy is ± 1 percent of full scale.

The DSI's were mounted in aluminum pipes which were driven into the streambed. Because the sensors and data-storage device were housed in one unit, the DSI had to be returned to the laboratory for data downloading and recalibration. This usually resulted in a few days of missing record each time the instrument was serviced. Field measurements were made whenever the DSI was deployed and whenever the unit was recovered. Calibration was performed in the laboratory using specific-conductance standards and an internal calibration curve. Data were recovered and the units were recalibrated at 4- to 5-week intervals.

Vertical profiles of specific conductance and temperature were measured at sites C2-C6 each time the conductance meters were serviced. Measurements were made near surface and at 1-ft intervals over the full depth of flow. Field readings at the appropriate depth were also compared to values recorded by the DSI at the corresponding time, and corrections were applied if necessary. Vertical profiles of specific conductance and temperature were measured biweekly at site C1 as part of the routine sampling schedule.

Campbell Creek salinity data indicated that, at times, there was significant variation in salinity from the water surface to the channel bottom. To obtain a better record of this vertical salinity profile, salinity data collection at Campbell Creek was modified in October 1991. At that time, the instrument at site C3 was moved to site C4, and salinity at site C4 was measured near the water surface and near the streambed. Likewise, the instrument at site C5 was moved to site C6 where salinity was measured near the surface and near the streambed. The instrument at site C2 remained at approximately mid-depth.

PRESENTATION OF DATA

Hydrologic and water-quality data in Hyde and Beaufort County drainage canals and Campbell Creek are presented in this section. In order to effectively present the large amount of information obtained at the study sites, some of the data collected at short time intervals have been summarized. For example, monthly summaries of water levels are provided, and

daily mean flows are presented, although these data were recorded at 15-minute intervals and are stored as such in the National Water Data Storage and Retrieval System of the USGS.

Data are presented in the following order:

- · Daily values of accumulated precipitation (tables 7 and 8).
- Summaries of monthly water-level statistics (tables 9-19)—Maximum and minimum
 are instantaneous values; daily maximum and daily minimum mean are the
 monthly means of the daily maximum and minimum values; daily mean range is
 the monthly average of daily differences between the daily maximums and daily
 minimums.
- Daily mean values of discharge (tables 20-24).
- Results of biweekly water-quality field measurements and sample analyses (tables 25-35)--Barometric pressure was measured and used with water temperature and dissolved oxygen to compute saturation percentage of dissolved oxygen; barometric pressure is not reported in the tables.
- Storm-event sample water-quality analyses (tables 36-40).
- Composite samples of specific conductance, with each sample representing a 14-hour period (figs. 11-15).
- Vertical profiles of salinity in Campbell Creek (tables 41-46).
- Daily mean values of salinity in Campbell Creek (tables 47-56).

Within each category, data are presented (if available) first for the Hyde County drainage canals, then for the Beaufort County drainage canals, and finally for the Campbell Creek sites.

Table 7.--Daily values of accumulated precipitation at site H2, October 1990-April 1992

LOCATION.--Lat 35°27'04", long 76°22'30"; Hyde County; in agricultural field adjacent to drainage canal, 0.1 mi southeast of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

REMARKS .-- e, estimated from National Weather Service gage at New Holland; ---, missing data or no day in that month.

RAINFALL ACCUMULATED (INCHES), OCTOBER 1990-SEPTEMBER 1991 DAILY SUM VALUES

	The state of the s												
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept	
1	0.00	0.00e	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.12	0.00	1.57	
2	.00	.00e	.00	.67	.00	.32	.00	.00	.00	.00	1.23	.00	
3	.00	.00e	.00	.00	.00	1.88	.00	.00	.00	.00	.08	.00	
4	.00	.00e	.14	.08	.00	.00	.00	.00	.00	.00	.00	.00	
5	.00	.00e	.00	.00	.00	.00	.00	.00	.00	.39	.28	.00	
6	.00	.18e	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	
7	.00	.00e	.21	.00	.41	.00	.00	.00	.00	.00	1.21	.00	
8	.00	.00e	.90	1.07	.00	.17	.00	.00	.00	.00	.00	.00	
9	.00	.00e	.00	.20	.00	.00	.00	.00	.00	.00	.00	.0	
10	.00	1.68e	.00	.00	.00	.00	.00	.00	.00	.19	3.59	.00	
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.80	.00	.00	
12	.00	.00	.00	.93	.00	.00	.00	.00	.00	.00	.00	.0	
13	.00	.00	.00	.00	.00	.45	.00	.00	.00	.00	.00	.0	
14	.00	.00	.00	.00	.07	.23	.00	.00	.00	.00	.00	.5	
15	.00	.02e	.00	.00	.00	.00	.00	.08	.00	1.03	.00	.0	
16	.00	.00	.00	.54	.00	.00	.00	.00	.00	.00	.00	.0	
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.0	
18	.00	.00	.00	.00	.00	.41	.00	.08	.00	.00	.00	.0	
19	.00	.00	.00	.10	.00	.00	.26	.00	.10	.00	.00	.0	
20	.00	.00	.00	1.18	.00	.00	1.70	.00	.62	.00	.00	.0	
21	.00	.00	.66	.00	.00	.00	.00	.00	.64	.00	.00	.0	
22	.00	.00	.19	.00	.16	.00	.00	.00	.83	.00	.00	.0	
23	1.28	.00	.00	.00	.00	.00	.00	.00	1.03	.00	.00	.0	
24	.00	.00	.00	.60	.00	.00	.00	.00	.00	.00	.00	.1	
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.38	.5	
26	3.20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		
27	.00e	.00	.00	.00	.00	.00	.00	.00	.00	.54	.00	.0	
28	.00e	.00	.00	.42	.00	.00	.82		.00	.89	.00	.0	
29	.00e	.79	.00	.00		3.09	.00		.00	.28	.00	.0	
30	.00e	.00	.00	.45	-	.23	.00	.79e	.00	.55	.00	.0	
31	.00e		.00	.00	100	.00		.00	***	.17	.00	1.00	
DTAL	4.48	2.67	2.10	6.24	0.64	6.78	2.78	0.95	3.22	5.96	6.77	3.2	

Table 7.--Daily values of accumulated precipitation at site H2, October 1990-April 1992--Continued

LOCATION.--Lat 35°27'04", long 76°22'30"; Hyde County; in agricultural field adjacent to drainage canal, 0.1 mi southeast of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

REMARKS .-- e, estimated from National Weather Service gage at New Holland; ---, missing data or no day in that month.

RAINFALL ACCUMULATED (INCHES), OCTOBER 1991-APRIL 1992 DAILY SUM VALUES

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	
1	0.00	0.00	0.00	0.00	0.00	0,00	0.00	
2	.00	.00	.00	.00	.00	.00	.00.	
2 3	.37	.00	.26	1.44	.00	.00	.00	
4	.00	.00	.00	.00	.00	.00	.21	
4 5	.20	.00	.00	.00	.00	.00	.00	
6 7	.00	.00	.00	.00	.00	.00	.00	
7	.00	.00	.00	.00	.00	.35	.00	
8	.00	.00	.00	.00	.00	.00	.00	
9	.00	.71	.00	.00	.00	.00	.00	
10	.00	1.38	.00	.00	.00	.34	.00	
11	.00	.00	.00	.00	.00	.00	.00	
12	.00	.00	.00	.00	.00	.00	.00	
13	.00	.00	.00	.22	.68	.00	.00	
14	.00	.00	.00	.13	.00	.00	.00	
15	.00	.00	.00	.00	.00	.20	.00	
16	1.06	.00	.00	.00	.00	.00	.36	
17	.43	.00	.00	.00	.00	.00	.00	
18	.00	.00	.00	.00	.19	.00	.00	
19	.00	.00	.00	.00	.41	.41	.00	
20	.00	.00	.00	.00	.00	.09	.00	
21	.00	.00	.00	.00	.00	.00	.00	
22	.00	.08	.00	.00	.00	.00	1.11	
23	.00	.00	.00	.52	.18	.36	.00	
24	.00	.00	.22	.00	.00	.00	.00	
25	.00	.00	.00	.00	.14	.00	.10	
26	.00	.00	.00	.00	.15	1.08	.00	
27	.00	.00	1.10	.00	.00	.00	.00	
28	.00	.00	1.80	.86	.00	.00	.00	
29	.00	.00	.76	.00	.00	.00	.00	
30	.00	.00	.00	.00		.24	.00	
31	.00	***	.00	.00	***	.29	11 800	
TOTAL	2.06	2.17	4.14	3.17	1.75	3.36	1.78	

Table 8.--Daily values of accumulated precipitation at site B3, October 1990-April 1992

LOCATION.--Lat 35 °17'10", long 76 °41'50"; Beaufort County, in agricultural field adjacent to drainage canal, 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

REMARKS .-- e, estimated from National Weather Service gage at New Bern; ---, no day in that month.

RAINFALL ACCUMULATED (INCHES), OCTOBER 1990-SEPTEMBER 1991 DAILY SUM VALUES

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept
1	0.00	0.00	0.07	0.00	0.00	1.49	0.08	0.00	0.13	0.85	0.00	0.00
2	.00	.00	.00e	.54	.09	.00	.00	.00	2.45	.00	.23	.00
3	.00	.00	.02e	.01e	.10	.08	.00	.08	.00	.00	.24	.00
4	.08	.00	.10e	.08e	.11	.03	.09	.07	.15	.70	.00	.0
5	.09	1.76	.00e	.00	.12	.00e	.00	.00	.00	.12	.12	.0
6	.08	.72	.00e	.00	.09	.00e	.13	.00	.00	.13	.00	.9
7	.00	.00	.38e	.34	.57	.08	3.13	.07	.00	.09	.63	.0
8	.00	.00	.49e	.95	.00	.07	.00	.00	.00	.00	.00	.0
9	.07	.00	.00e	.00	.00	.00	.00	.00	.00	.08	.00	.0
10	.11	.00	.00e	.00	.00	.00	.00	.14	.00	.00	.00	.0
11	.00	.00	.00e	.80	.00	.00	.00	.09	.00	.22	.00	.0
12	.00	.00e	.00	.18	.00	.00	.00	.00	.00	.00	.36	.0
13	.00	.00e	.00	.00	.00	.00	.00	.00	.00	.00	.00),
14	.08	.00e	.07	.00	.00	.00	.00	.00	.00	.00	.00	.0
15	.09	.00e	.00	.72	.00	.41	.00	.07	.00	.08	.79	.0
16	.08	.04	.00	.00	.00	.38	.00	.00	.00	.00	.00	.0
17	.00	.00	.00	.01	.00	.00	.00	.08	.00	.29	.00	.0
18	.00	.00	.00	.05	.00	.00	.00	.00	1.40	.00	.00	.0
19	.00	.00	.00	.14	.00	.00	.00	.34	.00	.21	.00	.(
20	.00	.00	.11	1.53	.00	.00	.00	.82	.00	.00	.00	1/1
21	.00	.00	.53	.00	.00	.08	.00	.10	.00	.11	.00	.(
22	.00	.00	.00	.00	.29	.43	.00	.09	.52	.00	.00	.(
23	1.73	.00	.00	.00	.10	.00	.00	.09	.67	.00	.47	.(
24	.00	.00	.00	.65	.00	.00	.00	.00	.00	.00	.36	,
25	.08	.00	.00	.00	.00	.09	.00	.00.	.08	.00	.43	1.1
26	3.52	.00	.00	.00	.00	.00	.00	.07	.00	.00	.21	.0
27	.00	.87	.00	.00	.64	.09	.00	.15	.00	.09	.60	.(
28	.00	.00	.21	.77	.27	.08	1.96	.92	.00.	.97	.00	.(
29	.07	.26	.00	.00		.00	.10	.09	.07	.36	.00	.(
30	.11	1.27	.00	.54	****	.00	.44	.10	.00	1.29	.00	.(
31	.00	1555	.00	.00	3.775	.10	777	.09	777	.00	.00	-
DTAL	6.19	4.92	1.98	7.31	2.38	3.41	5.93	3.46	5.47	5.59	4.44	3.7

Table 8.--Daily values of accumulated precipitation at site B3, October 1990-April 1992--Continued

LOCATION.--Lat 35 °17'10", long 76 °41'50"; Beaufort County, in agricultural field adjacent to drainage canal, 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

REMARKS .-- e, estimated from National Weather Service gage at New Bern; ---, no day in that month.

RAINFALL ACCUMULATED (INCHES), OCTOBER 1991-APRIL 1992 DAILY SUM VALUES

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	.27	.00.	.00	.46	.00	.00	.00
2 3 4 5	.47	.00	.30	5.13	.00	.00	.00
4	.00	.00	.00	.19	.00	.00	.22
5	.65	.00	.00	.13	.00	.00	.00
6	.08	.00	.00	.00	.00	.08	.00
7	.00	.00	.00	.00	.00	.34	.00
8	.08	.00	.00	.00	.00	.00	.07
9	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.11	.00	.00	.43	.07
11	.00	.00	.00	.00.	.00	.00	.00
12	.08	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.35	.00	.00	.00
14	.00	.00	.00	.69	.00	.00	.00
15	.00	.20	.00	.00	.00	.13	.08
16	1.61	.00	.00	.00	.00	.00	.15
17	.18	.14	.00	.00	.00	.00	.00
18	.00	.15	.00	.00	.00	.00	.00
19	.00	1.03	.00	.00	.00	.40	.00
20	.00	.00	.00	.00	.00	.10	.00
21	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.17	.00	.58	.39	.00
24	.00	.00	.30	.00	.00	.00	.00
25	.00.	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.18	.80	.00
27	.00	.00	1.08	.00	.00	.09	.00
28	.00	.00	.50	.00	.00	.00	.00
29	.00	.00	.73	.00	.00	.08	.00
30	.00	.00	.00	.00		.55	.00
31	.00	5.77	.00	.00		.09	1000
TOTAL	3.42	1.52	3.19	6.95	0.76	3.48	0.59

Table 9.--Monthly water-level statistics at site H1, October 1990-April 1992

LOCATION.--Lat 35 °26'44", long 76 °22'25"; Hyde County, on left bank of agricultural drainage canal about 100 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458600.

DRAINAGE AREA .-- Approximately 70 acres (0.109 mi 2).

PERIOD OF RECORD, -- May 1988 through April 1992,

REMARKS.--ft, foot; mi, mile; mi ², square mile; NA, not applicable; values are in feet above sea level; bottom of canal is at elevation -0.46 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		Wat	ter year 1991			
October	0.84	1.53	0.36	0.98	0.70	0.27
November	.78	1.56	.39	.90	.69	.22
December	.56	.90	.46	.63	.52	.10
January	.91	1.28	.47	1.01	.81	.19
February	.59	1.05	.43	.66	.54	.12
March	.90	1.57	.43	1.05	.78	.26
April	.72	1.32	.21a	.85	.60	.25
May	.66	1.19	.23	.83	.53	.29
June	.87	1.41	.29	1.04	.73	.31
July	.76	1.27	.25	.94	.61	.32
August	1.03	1.72 ^b	.54	1.16	.94	.22
September	.97	1.34	.39	1.11	.84	.27
Water year mean	0.80	NA	NA	0.93	0.69	0.24
		October	1991-April 1	992		
October	0.87	1.78	0.47	1.03	0.72	0.31
November	1.06	2.07 ^b	.37	1.17	1.00	.17
December	.41	1.33	.13ª	.47	.37	.10
January	.85	1.73	.42	.97	.77	.20
February	.71	1.36	.35	.88	.57	.30
March	.55	1.13	.23	.76	.39	.36
April	.57	1.17	.29	.76	.43	.33

^aMinimum value recorded for the water year.

bMaximum value recorded for the water year.

Table 10.--Monthly water-level statistics at site H1A, October 1990-April 1992

LOCATION.--Lat 35 °26'48", long 76 °22'18"; Hyde County, on left bank of agricultural drainage canal about 15 ft upstream of tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458600.

DRAINAGE AREA.--Approximately 70 acres (0.109 mi²).

PERIOD OF RECORD .-- October 1988 through April 1992.

REMARKS.--ft, foot; mi, mile; mi ², square mile; NA, not applicable; values are in feet above sea level; bottom of canal is at elevation -0.50 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		Wat	ter year 1991			
October	0.58	0.87	0.38	0.63	0.54	0.09
November	.64	.71	.57	.65	.63	.02
December	.70	.88	.57	.70	.69	.01
January	.89	.95	.77	.90	.89	.02
February	.61	.80	.45	.64	.59	.05
March	.90	1.62	.43	1.03	.80	.23
April	.75	1.30	.31	.85	.65	.20
May	.61	1.02	.29a	.69	.54	.15
June	.82	1.47	.35	.92	.73	.19
July	.79	1.28	.31	.91	.68	.23
August	1.06	1.87 ^b	.61	1.18	.97	.21
September	.94	1.30	.46	1.04	.85	.19
Water year mean	0.77	NA	NA	0.85	0.71	0.13
4 =		October	r 1991-April 1	992		
October	0.81	1.67	0.51	0.88	0.72	0.16
November	1.06	1.93 ^b	.37	1.14	1.00	.14
December	.39	1.23	.03a	.44	.35	.09
January	.87	1.71	.42	.96	.80	.16
February	.69	1.04	.37	.80	.59	.20
March	.53	1.05	.26	.64	.42	.22
April	.56	.83	.32	.64	.49	.14

^aMinimum value recorded for the water year.

bMaximum value recorded for the water year.

Table 11.--Monthly water-level statistics at site H2, October 1990-April 1992

LOCATION.--Lat 35 °26'57", long 76 °22'37"; Hyde County, on right bank of agricultural drainage canal about 90 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

DRAINAGE AREA.--Approximately 140 acres (0.219 mi 2).

PERIOD OF RECORD .-- May 1988 through April 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; NA, not applicable; values are in feet above or below (-) sea level; bottom of canal is at elevation -1.42 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		Wat	ter year 1991			
October	0.78	2.14 ^a	-0.68 ^b	1.11	0.42	0.69
November	.67	2.10	51	.98	.34	.64
December	.32	.99	68 ^b	.62	.00	.62
January	.71	1.36	15	1.00	.38	.64
February	.29	1.07	68 ^b	.58	05	.63
March	.74	1.54	25	1.09	.35	.73
April	.60	1.53	67	.92	.23	.68
May	.64	1.39	11	.94	.35	.59
June	.94	1.61	.13	1.22	.64	.58
July	.76	1.41	.04	1.18	.36	.82
August	.89	1.58	.04	1.21	.58	.63
September	.93	1.48	07	1,20	.63	.57
Water year mean	0.69	NA	NA	1.00	0.35	0.65
		October	1991-April 1	992		
October	0.85	2.13	-0.54	1.13	0.51	0.62
November	.96	2.50 ^a	39	1,22	.64	.58
December	.13	1.11	70	.44	19	.63
January	.62	1.81	-1.01 ^b	.98	.18	.80
February	.63	1.48	20	.95	.25	.70
March	.46	1.43	97	.88	.00	.88
April	.52	1.35	54	.83	.14	.69

^aMaximum value recorded for the water year.

bMinimum value recorded for the water year.

Table 12.--Monthly water-level statistics at site H2A, October 1990-April 1992

LOCATION.--Lat 35 °26'59", long 76 °22'34"; Hyde County, on right bank of agricultural drainage canal about 15 ft upstream of tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

DRAINAGE AREA.--Approximately 140 acres (0.219 mi 2).

PERIOD OF RECORD .-- October 1990 through April 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; NA, not applicable; values are in feet above or below (-) sea level; bottom of canal is at elevation -1.35 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		Wat	ter year 1991			
October	0.88	1.33	-0.02	1.09	0.63	0.46
November	.46	1.42ª	41	.60	.30	.30
December	.16	.59	52	.30	.01	.29
January	.57	1.10	11	.75	.35	.40
February	19	.02	61	08	26	.18
March	.35	1.17	21	.52	.23	.30
April	.09	.90	58	.16	.00	.15
May	06	.44	40	03	10	.07
June	18	.98	90 ^b	11	26	.15
July	.19	.68	22	.26	.14	.13
August	.73	1.36	.16	.88	.60	.28
September	.47	1.05	06	.54	.40	.12
Water year mean	0.29	NA	NA	0.38	0.17	0.24
		October	1991-April 1	992		
October	0.18	0.34	-0.30	0.22	0.14	0.09
November	.13	.61	26	.17	.07	.10
December	56	06	90 ^b	49	61	.11
January	.27	1.01a	90 ^b	.46	01	.47
February	.36	.75	11	.45	.25	.21
March	.26	.72	45	.42	.07	.35
April	.15	.46	44	.22	.05	.17

aMaximum value recorded for the water year.

^bMinimum value recorded for the water year.

Table 13.--Monthly water-level statistics at site H3, October 1990-April 1992

LOCATION.--Lat 35 °27'01", long 76 °22'49"; Hyde County, on left bank of agricultural drainage canal about 800 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458800.

DRAINAGE AREA.--Approximately 104 acres (0.162 mi 2).

PERIOD OF RECORD .-- May 1988 through April 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; NA, not applicable; values are in feet above or below (-) sea level; bottom of canal is at elevation -0.92 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		Wat	ter year 1991			
October	0.78	2.15a	-0.49 ^b	1.10	0.42	0.68
November	.68	2.12	48	.98	.34	.63
December	.38	1.00	48	.70	.08	.61
January	.73	1.35	08	1.03	.40	.64
February	.31	1.05	48	.59	01	.60
March	.74	1.54	20	1.08	.36	.72
April	.60	1.54	48	.92	.27	.66
May	.64	1.41	.06	.94	.37	.57
June	.82	1.61	.12	1.13	.53	.60
July	.72	1.84	22	1.16	.35	.81
August	.87	1.38	.36	1.16	.61	.55
September	1.03	1.55	.17	1.29	.73	.57
Water year mean	0.69	NA	NA	1.00	0.37	0.64
		October	r 1991-April 1	992		
October	0.93	2.11	-0.10	1.23	0.58	0.64
November	.94	2.49ª	38	1.21	.63	.58
December	.10	1.11	47	.41	18	.57
January	.64	1.81	49 ^b	.98	.27	.71
February	.59	1.45	19	.91	.26	.65
March	.45	1.42	48	.86	.06	.80
April	.52	1.34	36	.82	.21	.61

aMaximum value recorded for the water year.

^bMinimum value recorded for the water year.

Table 14.--Monthly water-level statistics at site H3A, December 1990-April 1992

LOCATION.--Lat 35 °27'06", long 76 °22'43"; Hyde County, on left bank of agricultural drainage canal about 15 ft upstream of tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458800.

DRAINAGE AREA.--Approximately 104 acres (0.162 mi 2).

PERIOD OF RECORD.--December 1990 through April 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; values are in feet above or below (-) sea level; bottom of canal is at elevation -0.85 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		December 1	990-Septembe	er 1991		
December	0.22	0.52	-0.24	0.34	0.09	0.25
January	.67	1.23	.09	.84	.46	.39
February	.20	.91	29	.31	.07	.23
March	.54	1.39	.01	.70	.40	.30
April	.30	1.08	31	.36	.22	.15
May	.18	.66	15	.21	.13	.06
June	.06	1.01	52ª	.13	.00	.13
July	.40	.89	.05	.46	.33	.12
August	.84	1.53 ^b	.24	.99	.65	.35
September	.58	1.12	.03	.63	.51	.13
		October	1991-April 1	992		
October	0.39	0.55	-0.18	0.41	0.34	0.08
November	.64	1.26	16	.71	.53	.19
December	.02	2.24b	44ª	.17	11	.27
January	.61	1.59	26	.77	.42	.36
February	.42	.71	03	.50	.32	.19
March	.38	1.56	11	.48	.26	.22
April	.27	.55	.10	.31	.22	.09

^aMinimum value recorded for the water year.

bMaximum value recorded for the water year.

Table 15.--Monthly water-level statistics at site B2, October 1990-April 1992

LOCATION.--Lat 35 °17'20", long 76 °41'45"; Beaufort County, on right bank of agricultural drainage canal about 150 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455143.

DRAINAGE AREA.--Approximately 47 acres (0.074 mi ²).

PERIOD OF RECORD .-- May 1988 through April 1992.

REMARKS.--ft, foot; mi, mile; mi ², square mile; NA, not applicable; values are in feet above sea level; bottom of canal is at elevation 0.79 ft; point of zero flow is at elevation 1.08 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		Wat	ter year 1991			
October	1.22	2.67	0.88ª	1.36	1.14	0.22
November	1.34	2.58	1.16	1.43	1.27	.16
December	1.35	1.68	1.23	1.38	1.32	.06
January	1.56	2.55	1.27	1.66	1.48	.17
February	1.41	1.71	1.28	1.43	1.38	.04
March	1.56	5.04 ^b	1.24	1.81	1.45	.35
April	1.47	3.05	1.15	1.61	1.37	.24
May	1.24	1.88	1.07	1.32	1.19	.13
June	1.59	3.89	1.13	1.91	1.39	.52
July	1.21	1.76	1.04	1.34	1.14	.20
August	1.43	2.11	1.15	1.59	1.35	.24
September	1.30	2.00	1.04	1.48	1.18	.31
Water year mean	1.39	NA	NA	1.53	1.30	0.22
		October	1991-April 1	992		
October	1.36	2.45	1,11	1.50	1.27	0.22
November	1.53	3.47	1.17	1.69	1.39	.30
December	1.22	2.32	1.04 ^a	1.26	1.19	.07
January	1.76	4.64 ^b	1.42	1.99	1.60	.39
February	1.43	1.99	1.27	1.50	1.38	.12
March	1.33	2.16	1.20	1.40	1.29	.11
April	1.30	2.11	1.16	1.37	1.24	.13

^aMinimum value recorded for the water year,

^bMaximum value recorded for the water year.

Table 16.--Monthly water-level statistics at site B2A, June 1991-April 1992

LOCATION.--Lat 35 °17'23", long 76 °41'46"; Beaufort County, on right bank of agricultural drainage canal about 15 ft upstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora. Owner, U.S. Geological Survey (USGS); Hydrologic Unit 03020104; USGS downstream order identification number 0208455143.

DRAINAGE AREA.--Approximately 47 acres (0.074 mi 2).

PERIOD OF RECORD .-- June 1991 through April 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; values are in feet above sea level; bottom of canal is at elevation 0.85 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		June-S	September 199	1		
June	3.15	4.17ª	2.54	3.24	3.07	0.17
July	2.27	2.71	1.68 ^b	2.32	2.23	.09
August	2.53	2.79	2.41	2.57	2.50	.07
September	2.45	2.57	2.26	2.47	2.40	.07
		October	1991-April 1	992		
October	2.53	2.71	2.35	2.55	2.51	0.04
November	2.28	3.17	2.10	2.34	2.25	.09
December	2.27	2.85	2.01 ^b	2.30	2.24	.06
January	2.68	4.67 ^a	2.55	2.79	2.62	.17
February	2.61	2.68	2.56	2.62	2.60	.03
March	2.61	2.67	2.54	2.63	2.59	.04
April	2.58	2.65	2.49	2.60	2.56	.04

aMaximum value recorded for the water year.

^bMininum value recorded for the water year.

Table 17.--Monthly water-level statistics at site B3, October 1990-April 1992

LOCATION.--Lat 35 °17'10", long 76 °41'50"; Beaufort County, on left bank of agricultural drainage canal 600 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

DRAINAGE AREA .-- Approximately 68 acres (0.107 mi 2).

PERIOD OF RECORD .-- May 1988 through April 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; NA, not applicable; values are in feet above sea level; bottom of canal is at elevation -0.11 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		Wat	ter year 1991			
October	1.07	2,68	0.43	1.35	0.81	0.54
November	.98	2,44	.55	1.20	.81	.39
December	.77	1.30	.66	.86	.72	.14
January	1.10	2.16	.72	1.34	.91	.43
February	.81	1.42	.67	.90	.75	.14
March	1.13	3.73ª	.68	1.49	.96	.53
April	1.08	2.81	.63	1.25	.74	.30
May	.88	1.70	.41	1.15	.68	.47
June	1.18	3.05	.45	1.56	.92	.63
July	.86	1.73	.36 ^b	1.14	.62	.51
August	1.13	1.97	.62	1.43	.90	.53
September	1.20	1.97	.58	1.47	.94	.53
Water year mean	1.01	NA	NA	1.26	0.83	0.43
		October	1991-April 1	992		
October	1.12	2.46	0.55	1.42	0.88	0.55
November	1.30	3.55a	.65	1.51	1.13	.38
December	.68	1.89	.51	.75	.63	.11
January	1.29	3.40	.69	1.50	1.15	.35
February	1.00	1.98	.68	1.21	.84	.37
March	.82	1.96	.61	1.06	.69	.36
April	.83	2.11	.50 ^b	1.09	.66	.43

aMaximum value recorded for the water year.

bMinimum value recorded for the water year.

Table 18.--Monthly water-level statistics at site B3A, May 1991-April 1992

LOCATION.--Lat 35 °17'08", long 76 °41'50"; Beaufort County, on left bank of agricultural drainage canal 45 ft upstream of flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

DRAINAGE AREA.--Approximately 68 acres (0.107 mi 2).

PERIOD OF RECORD .-- May 1991 through April 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; values are in feet above sea level; bottom of canal is at elevation -0.05 ft.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		May-S	September 199	1		
May	2.54	3.11	1.86	2.62	2.50	0.12
June	1.31	3.60 ^a	.62b	1.57	1.13	.44
July	.98	1.87	.63	1.19	.81	.38
August	1.17	2.16	.82	1.43	.99	.44
September	1.23	2.01	.79	1.47	1.02	.46
		October	1991-April 19	992		
October	0.96	1.61	0.83	1.06	0.88	0.18
November	.87	1.47	.47 ^b	.92	.85	.07
December	.93	2.04	.87	.97	.90	.07
January	1.64	4.05 ^a	.98	1.93	1.44	.49
February	1.29	1.98	.92	1.43	1.17	.26
March	1.06	1.97	.87	1.20	.99	.22
April	1.00	2.11	.85	1.15	.91	.24

^aMaximum value recorded for the water year.

^bMinimum value recorded for the water year.

Table 19.--Monthly water-level statistics at site C1, October 1990-April 1992

LOCATION.--Lat 35 °17'13", long 76 °41'13"; Beaufort County, on right bank of Campbell Creek, which receives inflow from sites B2 and B3; on State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455145.

DRAINAGE AREA.--Approximately 5,120 acres (8 mi 2).

PERIOD OF RECORD .-- May 1988 through April 1992.

REMARKS.--mi, mile; mi 2, square mile; NA, not applicable; values are in feet above or below (-) sea level.

Period	Mean	Maximum recorded	Minimum recorded	Daily maximum mean	Daily minimum mean	Daily mean range
		Wat	ter year 1991			
October	0.96	2.01	-0.29	1.26	0.61	0.65
November	.84	2.17	05	1.16	.51	.64
December	.22	1.59	-1.94ª	.69	23	.89
January	1.05	2.09	50	1.39	.62	.78
February	.37	1.49	91	.72	03	.75
March	.74	2.16	-1.00	1.47	.11	1.36
April	.93	3.48 ^b	-1.70	1.45	.35	1.10
May	.81	2.66	19	1.21	.42	.78
June	.85	1.97	23	1.11	.58	.53
July	.76	1.69	10	1.11	.41	.70
August	1.05	1.86	.23	1.34	.76	.59
September	1.17	1.98	.35	1.46	.86	.60
Water year mean	0.81	NA	NA	1.20	0.41	0.78
		October	1991-April 1	992		
October	1.07	2.43	0.31	1.37	0.76	0.61
November	1.15	3.47 ^b	29	1.47	.84	.63
December	.22	1.40	86	.51	14	.65
January	.79	2.06	93	1.13	.41	.72
February	.83	1.97	55	1.15	.44	.72
March	.55	2.10	95ª	1.00	.16	.83
April	.71	2.08	27	1.06	.35	.71

^aMinimum value recorded for the water year.

^bMaximum value recorded for the water year.

Table 20 .-- Daily mean values of discharge at site H1, October 1990-April 1992

LOCATION.--Lat 35°26'44", long 76°22'25"; Hyde County, on left bank of agricultural drainage canal about 100 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458600.

DRAINAGE AREA .-- Approximately 70 acres (0.109 mi 2).

PERIOD OF RECORD .-- April 1989 through April 1992.

REMARKS.--ft, foot; mi, mile; mi ², square mile; ---, no data or water level below velocity probe so discharge could not be computed; MAX, maximum; MIN, minimum; CFSM, cubic foot per second per square mile; IN., inch. Negative values indicate tidally driven flow in an upstream direction.

DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 1990-SEPTEMBER 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept
1	-0.021	0.061	0.010			0.071	0.028				0.093	0.060
2	020	.063	.013	0.56	555	.24	.046	777			.26	.082
3	027	.060	.017		0.058	.22	.037	777			.52	.11
4	020	.058	.026		.051	.066	.047				.45	.085
5	018	.061	.012	***	.021	.22	.033			203	.43	.079
6	026	.062	.009	***	.010	.33	.023	***	***		.49	.082
7	024	.078	.012	***	.21	.36	.016				.47	.11
8	022	.063	.025	eren.	.23	.21	.013				.47	.13
9	028	.075	.024		.26	.19	.010	***	***		.51	.13
10	041	.10	.024		.25	.19	.007	555		0.084	.43	.11
11	059	.046	.021		.20	.18	.009			.080	.48	
12	058	.041	.018		.21	.15	.016			.11	.37	
13	075	.030	.018	-	.33	.26	.020	555		.10	.48	
14	072	.023	.015		.29	.30			***	.090	.50	-
15	060	.006	.014	***	.14	.30	.025		***	.10	.44	
16	075	021	.015	***	.037	.73	.019		***	.11	.40	
17	024	014	.010	***	.048	.68	.020			.094	.39	***
18	.075	011	.014		.095	.57	.028	-		.067	.38	
19	.040	021	.014		.12	.42	.071			.048	.47	
20	.054	034	.010	777	.15	.44	.086			.022	.46	-
21	.049	038	.027	0.00	.12	.56	.079			.020	.42	

22	.037	036	.031		.12	.53	.073			.021	.34	
23	.062	027	.030		.093	.54	.078			.022	.16	
24	.067	023	.025		.089	.43	.075			.014	.074	
25	.079	013	.014		.097	.68	.078		***	.025	.090	.05
26	.080	007	.012	***	.060	.70				.033	.11	.05
27	.059	004	.013	-	.037	.67	***	***	***	.036	.10	.06
28	.065	-,008	.012		.054	.26		****		.055	.093	.07
29	.055	007	.012			.067		-	-	.069	.081	.05
30	.062	.006	.016			.028			***	.081	.071	.02
31	.062		.013	***		.000				.089	.058	
TOTAL	0.176	0.569	0.526		***	10.592					10.090	3.22
MEAN	.006	.019	.017			.34		***	****	***	.33	
MAX	.080	.10	.031			.73					.52	
MIN	075	038	.009		***	0	***			***	.058	
CFSM	.05	.17	.16			3.15					3.00	
IN.	.06	.19	.18			3.63		***		***	3.46	

Table 20 .-- Daily mean values of discharge at site H1, October 1990-April 1992-- Continued

LOCATION.--Lat 35°26'44", long 76°22'25"; Hyde County, on left bank of agricultural drainage canal about 100 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458600.

DRAINAGE AREA.--Approximately 70 acres (0.109 mi 2).

PERIOD OF RECORD .-- April 1989 through April 1992.

REMARKS.—ft, foot; mi, mile; mi ², square mile; —, no data or water level below velocity probe so discharge could not be computed; MAX, maximum; MIN, minimum; CFSM, cubic foot per second per square mile; IN., inch. Negative values indicate tidally driven flow in an upstream direction.

DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 1991-APRIL 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
1	***	0.10	0.022		-0.064	0.039	0.030
2	***		.022		060	.008	.019
3	***	.093	***		085	011	.027
4		.21			092	006	012
5		.20			11	.052	.008
6		.19			.075	.043	.022
7		.17	***	***	005	039	.010
8		.14	***		11	.039	.021
9		.14	***		.22	.089	.026
10	0.060			0.090	.22	.084	.015
11	.057	.20		.082	050	.046	.019
12	.044	.18		.070	.005	.036	.015
13	.066	.17		.065	.018	.025	.037
14	.065	.15		.063	.058	.021	.046
15	.024	.12		.042	.058	.011	.034
16	049	.050		.026	.022	.022	***
17	064	037	***	.036	.072	.022	
18	057	012		.028	.036		
19	039	.068		.045	.085		***
20	047	.064	***	.024	.070	***	***
21	058	022		.020	.054		
22	.035	.034		.030	.040		
23	.000	.057		.083	.034		
24	026	.051		.062	.041		
25	.077	.036		.043	.066		
26	.081	.042		.045	.077	-	
27	019	.040		.044	.077		
28	.024	.025		.099	.057		
29	.028	.021		.078	.025		
30	.16	.026		.018	.023	***	
31	.18			062	2 712 2	5797 5795	0777.5
TOTAL	30.05				0.834		2.2
MEAN	555				.029	£22 =	
MAX					.22		***
MIN			5.00		11		
CFSM				222	.26	222	22.00
IN.					.29		

Table 21 .-- Daily mean values of discharge at site H2, October 1990-April 1992

LOCATION.--Lat 35°26'57", long 76°22'37"; Hyde County, on right bank of agricultural drainage canal about 90 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

DRAINAGE AREA .-- 140 acres (0.219 mi 2).

PERIOD OF RECORD .-- April 1989 through April 1992.

REMARKS.--mi, mile; mi ², square mile; ---, no data; MAX, maximum; MIN, minimum; CFSM, cubic foot per second per square mile; IN., inch. Negative values indicate tidally driven flow in an upstream direction. Tide gate installed August 16, 1990.

DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 1990-SEPTEMBER 1991

1 2 3 4 5 6 7 8 9 10	-0.93 88 87 70 68 69 57 52 46 44	0.66 .73 .71 .70 .72 .71 .60 .58 .62 .79	1.3 1.5 1.4 .94 1.1 1.1 1.4 1.2	0.23 .66 .59 .56 .61	0.61 .56 .49 .48 .44		-0.56 54 58 53 44	0.86 .78 .83 .91 .70	0.13 .14 .19 .18 .22	-0.20 20 079 041 054	0.089 .074	-0.057 .095 10 38
3 4 5 6 7 8 9	87 70 68 69 57 52 46	.71 .70 .72 .71 .60 .58 .62	1.5 1.4 .94 1.1 1.1	.59 .56 .61	.49 .48 .44		58 53 44	.83 .91	.19 .18	079 041	0.089	10
4 5 6 7 8 9	70 68 69 57 52 46	.70 .72 .71 .60 .58	1.5 1.4 .94 1.1 1.1	.56 .61	.48 .44		53 44	.91	.18	041	.074	
4 5 6 7 8 9	68 69 57 52 46	.72 .71 .60 .58 .62	1.4 .94 1.1 1.1	.56 .61	.44		53 44		.18			
6 7 8 9	68 69 57 52 46	.72 .71 .60 .58 .62	.94 1.1 1.1 1.4	.61 .53 .55	.44		44					
7 8 9 10	57 52 46	.60 .58 .62	1.1	.55		-					.14	51
8 9 10	52 46	.58 .62	1.4		E 0		39	.57	.21	035	.22	34
8 9 10	52 46	.62			.52	***	36	.55	.21	004	.22	11
10		.62	1.2	.58	***		35	.54	.20	.009	.26	54
10			A new	.25			34	.54	.17		.27	-1.9
11			1.1	.50			29	.58	.17		.24	-1.8
	38	.49	1.0	.74	0.00		35	.53			.26	
12	36	.47	.76	.57			30	.42			.28	***
13	30	.38	.38	.52			24	.43			.24	
14	22	.38	.20	.61			17	.41			.24	
15	19	.12	.35	.56	***	***	12	.37		***	.22	***
16	22	20	.60	.69		0.27	063	.44			.23	
17	.12	16	.25	.58		.25	003	.41			.26	
18	.86	16	.69	.47		.35	.067	.36			.27	
19	.66	20	.69	.47		.30	.17	.40			.27	
20	.78	19	.61	.51		.30	.24	.38			.30	
21	.77	18	.91	.50	-	.31	.35	.30			.29	
22	.73	16	.98	.67		.26	.41	.28			.29	
23	.80	12	.89	.67	***	.25	.53	.36	007		.86	-
24	.82	12	.37	.63		.21	.58	.27	24		.85	***
25	.87	12	26	.68	***	.16	.72	.22	24	***	1.1	
26	.72	075	29	.69		.22	.92	.31	12		.047	
27	.79	097	056	.70		.19	1.0	.48	060		45	
28	.68	.008	.20	.64		056	1.0	.37	33		37	
29	.61	039	.53	.69		51	1.0	.53	22	***	23	
30	.63	.54	.77	.71		50	.95	.45	20		070	
31	.61		.34	.57		60		.12			13	
OTAL	2.04	7.387	22.254	17.93			2.311	14.70				***
MEAN	.066	.25	.72	.58		-	.077	.47				
/AX	.87	.79	1.5	.74			1.0	.91	***	***		
MIN	93	20	29	.23			58	.12			and the second	
FSM	.30	1.12	3.28	2.64			.35	2.17	000000	18770	1000	22276
N.	.35	1.25	3.78	3.05			.39	2.50				

Table 21 .-- Daily mean values of discharge at site H2, October 1990-April 1992-- Continued

LOCATION.--Lat 35°26'57", long 76°22'37"; Hyde County, on right bank of agricultural drainage canal about 90 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

DRAINAGE AREA .-- 140 acres (0.219 mi²).

PERIOD OF RECORD .-- April 1989 through April 1992.

REMARKS.--mi, mile; mi ², square mile; ---, no data; MAX, maximum; MIN, minimum; CFSM, cubic foot per second per square mile; IN., inch. Negative values indicate tidally driven flow in an upstream direction. Tide gate installed August 16, 1990.

DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 1991-APRIL 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
1		,,	700				0.58
2							.40
3 4	202					1	.52
4	1000		100				.47
5	222	222		222			.38
-							.50
6	***		***	***		***	.41
7		***	***	***	***	***	.39
8		***		***		***	.42
9						222	.41
10							17
11							.053
12						200	.25
13				1000			39
							.023
14		***		***			
15		***			***		14
16							14
17		***			CHARLE	***	.050
18							.14
19	777					0.31	.22
20						.60	31
21						.73	.15
22		***	***	***	***	.69	.24
23		***				.61	.63
24	200	***	***			.72	.61
25		***	***	***		.62	.60
26						.60	.74
27	***				755	.56	.89
			777	277			
28	1000		202		777	.47	.95
29					-	.51	1.1
30						.47	1.2
31	***		***	***		.43	
TOTAL						***	10.676
MEAN			***				.36
MAX							1.2
MIN			-			***	39
CFSM		***					1.62
IN.				2070		***	1.81
шч.			***		777		1.01

Table 22 .-- Daily mean values of discharge at site H3, October 1990-April 1992

LOCATION.--Lat 35°27'01", long 76°22'49"; Hyde County, on left bank of agricultural drainage canal about 800 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458800.

DRAINAGE AREA.--Approximately 104 acres (0.162 mi 2).

PERIOD OF RECORD .-- April 1989 through April 1992.

REMARKS.--mi, mile; mi ², square mile; ---, no data; MAX, maximum; MIN, minimum; CFSM, cubic foot per second per square mile; IN., inch. Negative values indicate tidally driven flow in an upstream direction.

DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 1990-SEPTEMBER 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1	0.000	0.61	0.45		0.94		-1.7		0.49	-0.065	-1.2	-0.18
2	-0.012	.63	.42		1.2		-1.4		.40	026		.41
3	42	.61			.82		.28		.39	015		.049
4	77	.60			.62		.69		.23	.078		.048
5	64	.58	.51	1.3	.59		047		.087	.15		029
6	63	.63	.73	.24	.61		29		027	.17		24
7	60	.60	.92	.60	.69		36		12	.27		21
8	57	.53	-1.1	.82	026		24		17	.27	***	.068
9	61	.57	21	.74	-1.0	***	12		23	.30		.063
10	99	.57	.010	.87	2.6		090		29	.43		010
11	-1.1	.39		-1.7	15		045		.35	.38		
12		.33		.93	86		.32		.67	.43		2.22
13		.28		.96	1.1		.40		.97	.47		
14		.34		.86	021		.34		1.0	.47		
15		.44		.70	.20		.47		1.0	.42		
16		-3.7		.70	.15		.50	0.75	1.2	.43		
17		73		.73	.024	***	.46	.67	1.2	.42	***	
18	.84	.20		.76	19		.37	.53	1.2	.36		
19	.55	.28		.90	30		.41	.44	1.2	.30		***
20	.69	.37		.63	34		.34	.48	1.1	.29		
21	.68	.38		.46			.19	.58	1.1	.34		
22	.69	.35		.67			.20	.41	.62	.43		***
23	.77	.37		1.4			.22	.44	41	.51		
24	.77	.33		.73			.34	.38	17	.47	.78	
25	.83	.30		1.1		***	.070	.52	.007	.61	.88	
26	.54	.27		1.5			***	.56	.066	.49	1.0	
27	.80	.27		.96		(.49	.049	24	1.1	1000
28	.64	.30		1.0	***			.42	.15	82	.97	
29	.54	.22	0.00	.88		1.5		.69	.17	91	.46	
30	.63	.20		1.3	100000	87		.61	.055	-1.0	.20	
31	.61	***		.81		-1.6		.42		-1.2	.14	
OTAL		7.12	***					***	12.287	4.212	N 222	222
/EAN		.24							.41	.14		
1AX		.63				***			1.2	.61		
MIN		-3.7							41	-1.2		
FSM		1.47							2.53	.84		***
N.		1.63	****		2.000	***			2.82	.97		

Table 22 .-- Daily mean values of discharge at site H3, October 1990-April 1992-- Continued

LOCATION.--Lat 35°27'01", long 76°22'49"; Hyde County, on left bank of agricultural drainage canal about 800 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458800.

DRAINAGE AREA.--Approximately 104 acres (0.162 mi 2).

PERIOD OF RECORD .-- April 1989 through April 1992,

REMARKS.--mi, mile; mi ², square mile; ---, no data; MAX, maximum; MIN, minimum; CFSM, cubic foot per second per square mile; IN., inch. Negative values indicate tidally driven flow in an upstream direction.

DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 1991-APRIL 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
1		0.041	0.41	0.55		0.027	0.17
		.45	.39	.55	***	.016	.12
2 3 4		.73	.42	.62	Derived .	.029	.13
4		22	.31	.67	51.29(E)	.094	.13
5	5151	.33	.42	.65	200	.24	.16
3		.55	.42	.05		.24	.10
6		.18	.40	.54	***	.47	.20
7		.19	.35	.85		.57	.26
8		.35	.35	.88		.47	17
9	***	.39	.31	.27	***	.60	39
10			.32	.051		.25	37
11		27	.42	.025		.038	36
12		.29	.42	.046		.056	.30
13		.33	.41	.057		.046	.38
14	-	.66	.38	.053		.012	.43
15		.62	007	.019		.040	.40
16	***	.54	.14	008		.14	.49
17	***	.59	.25	.002		.21	.43
18	***	.60	037	.008	***	.30	.45
19		.55	.085	.015		.31	.55
20	***	.53	.080	.028		.37	.59
		100	.000			101	
21		.50	.054		0.043	.41	.59
22		.45	.13		.044	.38	.44
23		.26	.17		.051	.43	.39
24	0.60	.45	.23		.046	.51	.29
25	.69	.42	12	***	.062	.44	23
26	(2)	.45	10		051	10	41
26	.62		.12		.051	19	
27	.64	.46	.24		.054	086	48
28	.68	.43	.49		.012	086	60
29	.83	.40	.50	777	.021	11	69
30	.82	.40	.46			14	
31	.87		.53			12	
TOTAL	***		8.625			5.726	
MEAN			.28			.18	***
MAX	***		.53			.60	
MIN			12			19	***
CFSM			1.72		***	1.14	
IN.	100000		1.98			1.31	

Table 23.--Daily mean values of discharge at site B2, October 1990-February 1991

LOCATION.--Lat 35 °17'20", long 76 °41'45"; Beaufort County, on right bank of agricultural drainage canal about 150 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455143.

DRAINAGE AREA.--Approximately 47 acres (0.074 mi 2).

PERIOD OF RECORD .-- April 1989 through April 1992.

REMARKS.--mi, mile; mi ², square mile; ---, no data or water level below velocity probe so discharge could not be computed; MAX, maximum; MIN, minimum; CFSM, cubic foot per second per square mile; IN., inch. Negative values indicate tidally driven flow in an upstream direction.

DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 1990-FEBRUARY 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	
1		0.13	0.038	0.48	0.78	
2	***	.12	.062	.74	.70	
2 3	***	.11	.035	.89	.60	
4		.10	.003	.89	.52	
5	***	.087	.013	.70	.52	
6		.18	.021	.41	.49	
7		.18	.032	.40		
8		.23	.17	1.1		
9		.32	.19	1.2		
10		.71	.14	.62		
11	***	.52	.097	.45		
12		.38	.093	.75		
13		.28	.087	.82		
14		.15	.097	.83		
15		.035	.082	.30		
16		.054	.054	.28		
17		010	.032	.58		
18		016	.048	.34		
19		006	.079	.34		
20		004	.072	.32		
21		.045	.11	.069		
22		.023	.17	.30		
23		.038	018	.40		
24	0.26	.036	19	.23	100000	
25	.30	.005	068	.37		
26	1.1	.004	16	.28		
27	1.7	.004	.019	.38		
28	.78	.004	.023	.36		
29	.52	.036	.002	.37	1,552	
30	.27	.12	059	.26	9222	
31	.10			.49		
TOTAL		3.865		15.949		
MEAN	0.000	.13	0.4550	.51		
MAX	0.000	.71	1,555	1.2		
MIN	(1575)	016	9 -10-1 0	.069	3375	
		1.75	2,077			
CFSM	555		5.55	6.97	555	
IN.		1.95		8.04	777	

Table 24.--Daily mean values of discharge at site B3, October 1990-April 1992

LOCATION.--Lat 35°17'10", long 76°41'50", Beaufort County, on left bank of agricultural drainage canal about 600 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

DRAINAGE AREA.--Approximately 68 acres (0.107 mi 2).

PERIOD OF RECORD .-- April 1989 through September 1991.

REMARKS.--mi, mile; mi ², square mile; ---, no data or water level below velocity probe so discharge could not be computed; MAX, maximum; MIN, minimum; CFSM, cubic foot per second per square mile; IN., inch. Negative values indicate tidally driven flow in an upstream direction.

DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 1990-SEPTEMBER 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1	-0.002	0.69	0.016	0.023	0.000	0.007	0.050		0.046	0.006	0.34	0.027
2	005	.70	.015	.021	.001	.016	.031			001	.39	.047
3	.001	.65	.015	.020	.000	777	.021	555	.001	.003	.041	.039
4	.008	.61	.015	.027	.001	.001	.022		.025	013	.042	.030
5	.009	.66	.015	.025	.001	.004	.011		.036	.000	.059	.022
6	.009	.65	.015	.016	.001	012	.009		.018	.014	.066	.026
7	.008	.86	.014	.021	.11	20	.012	***	022	.003	.060	.040
8	.002	.83	.025	.045	.36		.018		007	.012	.061	.042
9	.009	.99	.023	.028	086	.31	.013		043	.011	.052	.042
10	.013	1.1	.019	.034	35	.37	.017	***	022	.012	.043	.033
11	.015	.68	.020	.033	060	.37	.017	0.051	024	049	.075	.023
12	.018	.58	.018	.020	041	.44	.012	.026	019	068	.078	.034
13	062	.54	.020	.026	.031	.30	.009	.017	033	043	.056	.036
14	034	.64	.026	.020	070	.30	.015	.016	041	047	.051	.024
15	046	.49	.020	.007	.030	.54	.008	.027	010	065	.048	.029
16	.018	.22	.019	.004	.10	.52	.002	.048	.16	064	.052	.024
17	.026	.016	.019	.006	.010	.28	.001	.034	.26	051	.046	.019
18	.003	.020	.017	.006	13	.17	.002	.040	.40	.033	.057	.020
19	021	.028	.017	.004	14	.18	.013	.088		.065	.042	.016
20	029	.029	.020	.006	25	.20	7.77	.092		.074	.044	.029
21	031	.031	.019	.004	24	75		.072	.29	.061	.040	.040
22	007	.025	.017	.003	15	49		.047	.38	.062		.042
23	041	.020	.018	.004	.000	45		.037	.86	.050	.031	.026
24	22	.018	.018	.006	.001	42		.023	1.0	.037	.026	.026
25	87	.014	.020	.006	.000	40		.010	.93	.053	.028	
26	78	.013	.019	.008	001	28		.010	.80	.053	.039	
27	1.2	.012	.029	.005	.000	***		.006	.65	.051	.037	
28	.81	.011	.017	.006	.000	.15		.005	.49	.15	.038	
29	.81	.016	.016	.006				.006	.15	.19	.034	
30	.79	.017	.015	.004				.005	.014	.38	.025	
31	.60		.018	.003		.48		.014		.20	.016	
TOTAL	2.201	11.160	0.574	0.447	-0.872					1.119		***
MEAN	.071	.37	.019	.014	031				***	.036		
XAN	1.2	1.1	.029	.045	.36					.38		
NIN	87	.011	.014	.003	35				***	068		
CFSM	.67	3.49	.17	.14	29					.34		
N.	.77	3.89	.20	.16	30	****	***		***	.39		***

Table 24.--Daily mean values of discharge at site B3, October 1990-April 1992--Continued

LOCATION.--Lat 35°17'10", long 76°41'50", Beaufort County, on left bank of agricultural drainage canal about 600 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

DRAINAGE AREA.--Approximately 68 acres (0.107 mi 2).

PERIOD OF RECORD .-- April 1989 through September 1991.

REMARKS.--mi, mile; mi ², square mile; ---, no data or water level below velocity probe so discharge could not be computed; MAX, maximum; MIN, minimum; CFSM, cubic foot per second per square mile; IN., inch. Negative values indicate tidally driven flow in an upstream direction.

DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 1991-APRIL 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	
1		Sele:		0.006			0.025	
2		***	***			***	.010	
3		***	***		***		.013	
4					***		.005	
5	***	0.012	777.2		555		005	
6		.012			202	11.02	008	
7		.010	222				012	
8		.011	244			***	026	
9	0.006	***		***		***	020	
10	.005						10	
11	.004	.009	***	***			073	
12	.003	.010					050	
13	.005	.008					48	
14	.005	.006					21	
15	.004						19	
16	.006				***		081	
17		-					.038	
18						***	.042	
19			***		***	0.019	.073	
20			***			.087	014	
21				***		.084	.054	
22						.083	.084	
23			2.4000			.075	.18	
24						.090	.12	
25						.073	.14	
26		222				.080	.17	
27	2.22		200	***		.046	.24	
28	***		***			.031	.35	
29	***	***				.029	.43	
30	***	***	and the same of			.018	.33	
31	222					.018	3777	
TOTAL	223			***		222	1.035	
MEAN							.034	
MAX							.43	
MIN		222			1	222	48	
CFSM							.32	
IN.							.36	

Table 25.--Biweekly water-quality field measurements and sample analyses at site H1, October 1990-May 1992

LOCATION.--Lat 35 °26'44", long 76 °22'25"; Hyde County, on left bank of agricultural drainage canal about 100 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458600.

DRAINAGE AREA.--Approximately 70 acres (0.109 mi²).

PERIOD OF RECORD .-- November 1988 through May 1992.

REMARKS.--ft, foot; mi, mile; mi ², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Negative streamflow values indicate tidally driven flow in an upstream direction. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water level (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation
				Water ye	ear 1991				
Oct.	17 25	1530 1730	0,99 .99	-0.01 .00	17,600 16,000	6.5 6.7	21.0 17.5	1.6 1.6	19 18
Nov.	15 30	1430 1130	.73 .52	01 .00	920 1,060	6.6 7.0	10.0 8.0	12.8 9.0	112 75
Dec.	14	1430	.61	.00	643	6.8	9.0	12.1	104
Jan.	04 17	1300 1000	.66 .92	.00 .50	931 810	6.3 6.4	10.5 11.0	11.8 6.5	105 59
Feb.	08 21	1100 1645	.68 .43	.23 .12	687 411	6.8 7.4	10.5 15.0	9.8 14.2	88 140
Mar.	08 28	1200 1530	.85 .52	.17	610 1,690	5.4 6.8	10.0 20.0	4.4	 49
Apr.	10 26	1400 1500	.28 .98	.00	596 4,350	7.5 6.1	23.0 21.0	8.4 4.4	99 50
May	12 30	1530 1630	.37 .80	.00	7,580 13,300	6.7	28.0 29.5	6.4 5.5	83 76
June	11 21	0930 2100	.51 1.10	.00	15,900 2,730	6.4 6.3	21.5 23.5	1.3 4.7	16 56
July	09	1530	1.00	.00	11,500	6.5	31.0	3.9	55
Aug.	02 23	1300 0845	.93 .93	.23 .27	924 385	6.0 6.5	25.0 23.0	3.1 2.0	38 23
Sept.	11 24	1030 1645	.84 .97	.00 .80.	6,200 14,800	6.1 6.6	22.5 21.5	0.6 2.0	7 24
				October 199	1-May 1992	Ĝ			
Oct.	09 23	1200 1515	0.87 .83	0.00	13,300 5,410	6.7 6.6	16.5 17.0	2.4 2.6	25 27
Nov.	15	1400	.95	.00	9,000	6.0	13.0	3.6	35
Dec.	03 23	0830 0949	.37 .14	.00.	8,910	6.7 7.3	18.0 7.0	4.3 4.5	47
Jan.	09 22	0830 1330	1.33 .42	.00	1,780 1,530	6.7 8.6	7.0 5.5	5.1 9.3	42 74
Feb.	05 20	1315 1200	.83 .59	.00	3,530 1,400	9.1 7.7	8.5 12.0	11.6 15.2	101 141
Mar.	04 18 31	0930 1400 1230	.46 .25 .40	.00 .00 .00	10,300 10,800 4,900	6.8 6.8 6.8	13.0 16.5 14.0	1.3 4.3	13
Apr.	16	1245	.51	.00	8,330	6.6	16.0	5.4	56
May	01	1000	.66	.00	10,400	7.4	15.5	5.4	56

Table 25.--Biweekly water-quality field measurements and sample analyses at site H1, October 1990-May 1992--Continued

LOCATION,--Lat 35 °26'44", long 76 °22'25"; Hyde County, on left bank of agricultural drainage canal about 100 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458600.

DRAINAGE AREA .-- Approximately 70 acres (0.109 mi 2).

PERIOD OF RECORD .-- November 1988 through May 1992.

REMARKS,—ft, foot; mi, mile; mi², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; —, no data; N, nitrogen; P, phosphorus; <, less than. Negative streamflow values indicate tidally driven flow in an upstream direction. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Dat	te	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)		organic	phosphorus	Total phosphorus, ortho (mg/L as P)	Suspender sediment (mg/L)
				Water year	1991			
Oct.	17 25	<0.10 <.10	0.19 .13	0.91 .77	1.1	0.03	<0.01 .02	6 20
Nov.	15 30	.30 <.10	.08	.62 .52	.70 .60	.02 .05	<.01 .01	2 9
Dec.	14	.20	.05	.55	.60	.04	.02	7
Jan.	04 17	<.10 .40	.06 .05	.64 1.0	.70 1.1	.02 .03	<.01	7 9
Feb.	08 21	.40 <.05	.04 .06	1.9 .54	1.9 .60	.04	.03 .01	4
Mar.	08 28	.41 <.05	.02 .18	7.8 1.6	7.8 1.8	.09 .14	.06 .03	5 189
Apr.	10 26	<.05 .12	.11 .05	1.7 .95	1.8 1.0	.11	.03 <.01	171 12
May	12 30	<.05 <.05	.42	1.2 2.9	1.6 3.3	.07 .07	.03	18 39
June	11 21	<.05	.35	1.2	1.5	.07	<.01	**
July	09	<.05	.07	1.4	1.5	.05	.02	
Aug.	02 23	<.05 <.05	.19 .25	.91 1.2	1.1 1.4	.11 .10	.02	26 17
Sept.	11 24	<.05 <.05	.58 .39	1.4 1.1	2.0 1.5	.08 .08	<.01 .01	11
			(October 1991-	May 1992			
Oct.	09 23	<.05 <.05	0.26 -24	0.94	1.2 1.2	0.06	<0.01	5 9
Nov.	15	<.05	.04	.46	.50	.04	<.01	18
Dec.	03 23	<.05 <.05	.70 .80	1.4 1.6	2.1 2.4	.14 .18	.02 <.01	16 46
Jan.	09 22	.10 <.05	.05 .11	.85 .49	.90 .60	.06 .02	.01 <.01	5 <.5
Feb.	05 20	<.05 <.05	.11	.49 .77	.60 .80	.03 .05	<.01 <.01	17 7
Mar.	04 18 31	<.05 <.05 .45	.67 1.90 1.10	1.3 1.8 1.2	2.0 3.7 2.3	.06 .11 .05	<.01 .02 <.01	6 42 12
Apr.		.13	.29	.91	1.2	.03	<.01	4
May		<.05	.15	.25	.40	<.01	.03	4

Table 26.--Biweekly water-quality field measurements at site H1A, October 1990-May 1992

LOCATION.--Lat 35 °26'48", long 76 °22'18"; Hyde County, on left bank of agricultural drainage canal about 15 ft upstream of tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458600.

DRAINAGE AREA.--Approximately 70 acres (0.109 mi 2).

PERIOD OF RECORD .- November 1988 through May 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); --, no data.

Date	Time	Water level (feet above sea level)	Specific conductance (µS/cm)	Temperature of water (°C)
	v	Vater year 1991		
Oct. 17	1530	0.56	21,200	21.0
25	1730	.78	14,000	17.5
Nov. 15	1430	.71	742	10.0
30	1130	.56	846	8.0
Dec. 14	1430	.65	562	9.5
Jan. 04	1300	.73	792	10.5
17	1000	.93	732	11.0
Feb. 08	1100	.72	594	10.5
21	1645	.45	469	15.0
Mar. 08	1200	.84	434	10.0
28	1530	.54	1,710	21.5
Apr. 10	1400	.34	2,180	24.5
26	1500	.97	3,740	21.0
May 12	1530	.38	7,410	25.0
30	1630	.54	12,800	30.0
June 11	0930		22	21.5
July 09	1530	.98	10,900	31.5
Aug. 02	1300	.92	879	25.0
23	0845	.94	253	23.5
Sept. 11	1030	.84	5,900	22.5
24	1645	.80	15,000	21.5
	Octo	ober 1991-May	1992	
Oct. 09	1200	0.70	9,440	16.5
23	1515		1,820	17.0
Nov. 15	1400	.95	8,890	13.0
Dec. 03	0830	.37	7,270	18.0
23	0949	.15		7.0
Jan. 09	0830	1.33	1,500	7.0
22	1330	.44	1,250	5.5
Feb. 05	1315	.85	1,150	8.5
20	1200	.62	1,300	12.0
Mar. 04	0930	.47	9,750	13.0
18	1400	.27	9,300	16.5
31	1230	.40	4,400	14.0
Apr. 16	1245	.51	8,680	16.0
May 01	1000	.65	8,330	15.5

Table 27.--Biweekly water-quality field measurements and sample analyses at site H2, October 1990-May 1992

LOCATION.--Lat 35 °26'57", long 76 °22'37"; Hyde County, on right bank of agricultural drainage canal about 90 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

DRAINAGE AREA .-- Approximately 140 acres (0.219 mi²).

PERIOD OF RECORD .-- November 1988 through May 1992.

REMARKS,--ft, foot; mi, mile; mi ², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Negative streamflow values indicate tidally driven flow in an upstream direction. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water level (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation
				Water ye	ar 1991				
Oct.	17 25	1700 0945	0.96 .94	0.33	21,800 21,800	7.1 7.1	25.0 21.0	5.5 3,2	71 39
Nov.	15 30	1200 1200	.63 .48	59 .00	10,300 12,900	6.9 6.6	12.5 14.5	11.9 4.7	114 47
Dec.	14	1530	.48	.83	11,000	6.9	12.5	9.6	93
Jan.	04 17	1100 1300	.67 .55	1.23 .58	6,220 1,990	6.3 6.4	12.0 11.5	6.3	59
Feb.	08 21	1300 1530	.17 02	.46 .39	3,370 11,800	7.1 6.7	11.5 15.5	5.4 6.3	50 65
Mar.	08 28	1430 1330	.78 .25	.00 30	4,620 5,530	5.6 7.8	12.5 20.0	9.4	106
Apr.	10 26	1300 1230	.0 1.05	39 1.85	3,020 14,400	8.1 6.7	24.5 20.5	7.0 6.3	85 73
May	12 30	1630 1745	.20 .88	.00 1.71	17,900 15,600	8.6	27.0 32.0	9.4 8.3	125 120
June	11	0830	.50	1.68	19,600	6.9	23.5	4.0	50
July	09	1430	1.20	.00	14,000	7.1	32.0	7.6	109
Aug.	02 23	1600 0945	1.12 1.10	1.91 1.67	8,310 6,900	7.0 6.5	27.0 24.0	7.8 4.8	101 58
Sept.	11 24	1130 1545	.60 1.03	1.78	16,900 20,800	6.7 7.3	27.0 22.0	4.3 4.5	57 55
				October 199	1-May 1992				
Oct.	09 23	1015 1430	0.84 .85	-0.31 .00	22,900 24,500	7.4 7.9	16.5 20.5	4.5 9.5	50 114
Nov.	15	1630	.76	.00	14,900	7.0	13.5	9.4	94
Dec.	03 23	0730 1145	.28	.00	18,200 15,500	7.7 7.3	19.5 7.0	6.3 12.9	73 111
Jan.	09 22	1015 1130	1.02 .24	.00.	7,170 719	6.7 9.0	9.0 9.0	6.5 10.6	58 91
Feb.	05 20	1430 1330	1.00 .40	.00	13,300 2,170	7.7 7.0	12.0 15.0	16.0 13.2	156 131
Mar.	04 17 31	1200 1500 1520	.56 .52 .01	57 1.14 .00	20,500 9,300 1,330	7.1 8.4 7.2	13.5 14.5 14.0	6.9 14.7 8.3	71 149 82
Apr.	16	1415	.60	.00	17,900	7.1	18.0	9.2	103
May	01	1345	.80	1.65	19,300	8.0	21.0	13.8	165

Table 27.--Biweekly water-quality field measurements and sample analyses at site H2, October 1990-May 1992--Continued

LOCATION.--Lat 35 °26'57", long 76 °22'37"; Hyde County, on right bank of agricultural drainage canal about 90 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

DRAINAGE AREA.--Approximately 140 acres (0.219 mi²).

PERIOD OF RECORD .-- November 1988 through May 1992.

REMARKS.--ft, foot; mi, mile; mi ², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Negative streamflow values indicate tidally driven flow in an upstream direction. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Dat	ie.	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	Total phosphorus, ortho (mg/L as P)	sediment
				Water year	1991			
Oct.	17 25	<0.10 <.10	0.28	0.82	1.1	0.03	<0.01 .02	15 16
Nov.		.70 <.10	.16 .32	.24	.40 .90	.02	<.01 <.01	8 22
Dec.	14	.40	.14	.66	.80	.05	<.01	<.5
Jan.	04 17	.60 1.20	.29 .15	.71 1.0	1.0 1.2	.02	.01 .02	13 12
Feb.	08 21	.50 <.10	.28	1.1 .57	1.4 .80	.03	.01 <.01	21
Mar.	08 28	.68 <.05	.21	.99 1.2	1.2 1.2	.05 .10	.02	23 44
Apr.	10 26	.05 .13	.27 .06	1.5 .24	1.8	.10	.03 <.01	29 9
May	12 30	<.05 <.05	.05	.75 .76	.80	.06 .03	.01 <.01	51 28
June	11	<.05	.07	.63	.70	.06	<.01	
July	09	<.05	.03	1.1	1.1	.05	.02	176
Aug.	02 23	.08 .18	.14 .27	.96 .93	1.1 1.2	.05	<.01 <.01	20 21
Sept.	11 24	<.05 <.05	.03 .08	.77 .62	.80 .70	.05 .06	<.01 .01	22
			(October 1991-	May 1992			
Oct.	09 23	<0.05 <.05	0.08	0.42 .77	0.50	0.06	<0.01 .04	12 18
Nov.	15	.12	.12	.48	.60	.02	.01	8
Dec.	03 23	<.05 <.05	.10 .09	.30 .41	.40 .50	.02 .02	<.01 <.01	5 1
Jan.	09 22	1.30 .35	.05 .06	.85 .54	.90 .60	.04 .02	.01 .01	6 4
Feb.	05 20	.17 .06	.06 .03	.54 .87	.60 .90	.03 .17	<.01 <.01	6 11
Mar.	04 17 31	<.05 <.05 ,13	.02 .05 .11	.78 .65 .79	.80 .70 .90	.04 .02 <.01	.01 .01 <.01	11 25 35
Apr.		<.05	.07	.83	.90	.03	<.01	12
May		<.05	.07	.43	.50	<.01	.02	18

Table 28.--Biweekly water-quality field measurements at site H2A, October 1990-May 1992

LOCATION.--Lat 35 °26'59", long 76 °22'34"; Hyde County, on right bank of agricultural drainage canal about 15 ft upstream of tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

DRAINAGE AREA.--Approximately 140 acres (0.219 mi 2).

PERIOD OF RECORD .-- October 1990 through May 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); --, no data.

Date	Time	Water level (feet above sea level)	Specific conductance (µS/cm)	Temperature of water (°C)
	,	Vater year 1991		
Oct. 17	1700	1	6,300	25.0
25	0945	0.53	21,090	21.0
Nov. 15	1200	.52	16,740	12.5
30	1200	.25	9,460	15.5
Dec. 14	1530	07	6,650	10.5
Jan. 04	1100	.40	3,090	12.0
17	1300	.41	1,410	14.0
Feb. 08	1300	.18	2,060	11.5
21	1530		5,710	15.5
Mar. 08	1430	.56	1,730	12.5
28	1330	.08	2,980	21.0
Apr. 10	1300	54	2,920	24.5
26	1230	.54	4,860	20.5
May 12	1630	.03	4,050	23.0
30	1745	34	6,000	30.0
June 11	0830	.16	6,030	23.5
July 09	1430	.16	2,790	32.0
Aug. 02	1600	.73	3,040	27.0
23	0945	.75	1,530	24.5
Sept. 11	1130	.59	1,900	27.0
24	1545	06	1,500	22.0
	Octo	ber 1991-May 1	992	
Oct. 09	1015	0.04	1,480	16.5
23	1430		2,050	20.5
Nov. 15	1630	.68	4,210	13.5
Dec. 03	0730	13	4,950	19.5
23	1145	73	5,270	7.0
Jan. 09	1015	.02	2,990	9.0
22	1130	.13	611	9.0
Feb. 05	1430	.28	2,150	12.0
20	1330	.14	1,710	15.0
Mar. 04	1200	.31	9,950	13.5
17	1500	.13	8,820	14.5
31	1520	.06	1,210	14.0
Apr. 16	1415	.03	2,090	18.0
May 01	1345	.28	2,050	21.0

Table 29.--Biweekly water-quality field measurements and sample analyses at site H3, October 1990-May 1992

LOCATION.--Lat 35 °27'01", long 76 °22'49"; Hyde County, on left bank of agricultural drainage canal about 800 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458800.

DRAINAGE AREA.--Approximately 104 acres (0.162 mi 2).

PERIOD OF RECORD .-- November 1988 through May 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Negative streamflow values indicate tidally driven flow in an upstream direction. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water level (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation
				Water ye	ar 1991				
Oct.	17 25	1330 1615	0.94 .92	-0.30 90	21,400 21,600	8.7 7.2	21.0 21.0	5.1 3.3	61
Nov.	15 30	1630 1500	.59 .56	76 .00	12,800 16,800	7.0 7.3	13.0 12.0	5.0 10.2	49 99
Dec.	14	1200	.28	-1.06	12,200	7.3	10.5	9.4	87
Jan.	04 17	0900 1400	.58 .47	.74 48	5,380 1,550	6.4 6.3	10.0 11.5	8.4	75
Feb.	08 21	1430 1330	.18 6	66 16	1,630 8,550	7.0 7.1	11.0 15.5	7.1 9.0	65 92
Mar.	08 28	1530 1130	.58 .12	.00	2,170 9,320	6.1 6.9	11.5 20.5	 8.1	94
Apr.	10 26	1200 1030	2 .94	.55 2.0	3,090 13,000	7.8 7.6	18.5 18.5	6.1 7.5	66 83
May	12 30	1730 1330	.49 .68	24 2.6	13,600 16,500	7.8	27.0 31.0	11.4 8.3	150 118
June	11	0800	.53	1.44	19,700	8.5	21.0	6.1	73
July	09	1330	1.05	1.25	12,000	7.0	31.5	9.1	129
Aug.	02 23	1500 1145	.96 .91	1.50 .59	6,690 5,840	6.8 6.6	27.0 24.5	7.7 5.8	99 71
Sept.	11 24	1300 1400	.78 .96	.11	16,900 20,700	6.8 7.3	25.0 22.5	4.7 5.8	60 72
				October 199	1-May 1992				
Oct.	09 23	0900 1330	0.78 .81	-0.28 .28	23,000 22,800	8.6 7.7	15.5 17.5	6.5 7.8	70 88
Nov.	15	1530	.68	.00	13,000	6.9	14.0	10.2	103
Dec.	03 23	1000 1300	.32 01	.00	16,800 15,100	7.0 7.7	19.5 9.0	7.5 13.0	88 117
Jan.	09 22	1100 1415	1.09 .35	.00	6,600 6,390	6.6 7.8	8.5 8.5	5.1 10.4	45 90
Feb.	05 20	1530 1430	.88 .45	.00.	11,300 4,150	7.4 7.1	10.5 15.0	14.2 13.3	133 133
Mar.	04 17 31	1030 1130 1715	.55 .40 .68	.49 23 .00	13,900 9,220 3,400	6.9 9.0 7.1	14.5 11.5 14.5	5.0 14.2 9.2	51 134 92
Apr.	16	1530	.60	**	8,910	7.7	22.0	14.8	173
May	01	1200	.75	.81	15,400	8.0	19.5	14.4	165

Table 29.--Biweekly water-quality field measurements and sample analyses at site H3, October 1990-May 1992--Continued

LOCATION.--Lat 35 °27'01", long 76 °22'49"; Hyde County, on left bank of agricultural drainage canal about 800 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458800.

DRAINAGE AREA.--Approximately 104 acres (0.162 mi 2).

PERIOD OF RECORD .-- November 1988 through May 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Negative streamflow values indicate tidally driven flow in an upstream direction. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Dat	ie	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	Total phosphorus, ortho (mg/L as P)	sediment
				Water year	1991			
Oct.	17 25	<0.10 <.10	0.07	0.63 .64	0.70	0.02 <.01	0.01	7 14
Nov.	15 30	.40 <.10	.18 .13	.62 .77	.80	.02 .03	<.01	3
Dec.	14	.30	.10	.60	.70	.03	<.01	3
Jan.	04 17	.40 1.40	.14 .07	.66 .63	.80 .70	<.01 <.01	<.01 .01	12 7
Feb.	08 21	.70 <.10	.13 .10	.47 .60	.60 .70	.02	<.01 <.01	 14
Mar.	08 28	.27 <.05	.08 .06	.82 1.1	.90 1.2	.07	.02 <.01	35 70
Apr.	10 26	<.05 .13	.11 .04	1.4 .46	1.5 .50	.07 .03	.01 <.01	15 32
May	12 30	<.05 <.05	.03 .03	.97 1.1	1.0 1.1	.06	<.01 <.01	53 14
June	11	<.05	.03	.67	.70	.04	<.01	-
July	09	<.05	<.01		1.1	.03	<.01	-
Aug.	02 23	<.05 <.05	.09 .11	1.2 1.3	1.3 1.4	.02	<.01 <.01	19
Sept.	11 24	<.05 <.05	.04 .06	.86 .64	.90 .70	.06 .05	<.01 .01	-
			C	October 1991-!	May 1992			
Oct.	09 23	<0.05 <.05	0.04	0.36 .37	0.40 .40	0.03	<0.01 .02	6 8
Nov.	15	1.00	.05	.65	.70	.06	.06	7
Dec.	03 23	<.05 <.05	.05 .07	.35 .53	.40 .60	.03 .01	<.01 <.01	10 6
Jan.	09 22	1.50 .35	.03 .07	.67 .53	.70 .60	.03 .02	.01	7
Feb.	05 20	.29 .10	.08 .03	.52 .67	.60 .70	.02 .07	<.01 <.01	24 11
Mar.	04 17 31	<.05 <.05 <.05	.02 .02 .02	.88 .68 .58	.90 .70 .60	.05 .02 <.01	<.01 <.01 <.01	15 12 22
Apr.	16	<.05	.02	.98	1.0	.02	<.01	8
May	01	<.05	.04	1.3	1.3	.07	.03	-

Table 30.--Biweekly water-quality field measurements at site H3A, October 1990-May 1992

LOCATION.--Lat 35 °27'06", long 76 °22'43"; Hyde County, on left bank of agricultural drainage canal about 15 ft upstream of tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458800.

DRAINAGE AREA.--Approximately 104 acres (0.162 mi²).

PERIOD OF RECORD .-- October 1990 through May 1992.

REMARKS.--ft, foot; mi mile; mi 2, square mile; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); --, no data.

Date	Time	Water level (feet above sea level)	Specific conductance (µS/cm)	Temperatur of water (°C)
	V	Vater year 1991		
Oct. 17	1330	15 to	3,850	21.0
25	1615		3,410	21.0
Nov. 15 30	1630 1500	***	3,810	13.0 12.0
Dec. 14	1200	0.15	3,980	10.0
Jan. 04	0900	.43	2,090	10.0
17	1400	.54	1,550	12.0
Feb. 08	1430	.31	1,510	11.0
21	1330	-1.00	5,000	15.0
Mar. 08	1530	.63	2,380	10.5
28	1130	.18	3,120	20.5
Apr. 10	1200	02	4,300	18.0
26	1030	.58	4,680	19.0
May 12	1730	.18	5,850	24.5
30	1330	12	6,500	30.5
June 11	0800	40	10,500	22.0
July 09	1330	.34	2,590	31.0
Aug. 02	1500	.78	2,850	27.0
23	1145	.80	2,260	24.5
Sept. 11	1300	.61	4,500	25.0
24	1400	.26	2,320	22.5
	Octo	ber 1991-May l	1992	
Oct. 09	0900	1.39	2,480	15.5
23	1330	.41	3,850	17.5
Nov. 15	1530	.74	8,060	14.0
Dec. 03	1000	.14	7,410	19.5
23	1300	14	11,000	9.0
Jan. 09	1100	1.09	2,150	8.5
22	1415	.18	3,000	8.5
Feb. 05	1530	.36	6,340	10.5
20	1430	.37	1,890	15.0
Mar. 04	1030	.20	5,330	14.5
17	1130	.11	4,780	11.5
31	1715	.29	3,560	14.5
Apr. 16	1530	.20	5,060	22.0
May 01	1200	.27	5,460	19.5

Table 31.--Biweekly water-quality field measurements and sample analyses at site B2, October 1990-April 1992

LOCATION.--Lat 35 °17'20", long 76 °41'45"; Beaufort County, on right bank of agricultural drainage canal about 150 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455143.

DRAINAGE AREA.--Approximately 47 acres (0.074 mi 2).

PERIOD OF RECORD .-- November 1988 through April 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water leve (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation
				Water ye	ear 1991				
Oct.	18	1200	1.12	0.00	15,300	7.5	23.5	3.4	42
Nov.	14 29	1430 1600	1.42 1.38	.17	358 617	9.1 7.4	14.0 15.0	14.9 14.7	143 146
Dec.	12	1330	1.39	.06	368	8.9	12.0	15.6	144
Jan.	03 18	1530 1130	1.48 1.48	.31 .37	317 282	7.1 7.2	12.0 10.0	11.9 12.0	109 106
Feb.	07 22	1200 1400	1.46 1.34	.20 .03	324 435	6.8 7.8	12.5 14.0	10.4 13.6	98 132
Mar.	07 27	1630 1330	1.54 1.26	.37 .04	247 678	7.0 8.2	18.0 23.5	15.5	183
Apr.	10	0730	1.30	.04	500	7.0	18.5	1.7	18
May	10 31	1200 1130	1.15 1.22	.01 .02	367 569	6.6	22.5 26.0	6.3 1.7	72 22
June	11	1300	1.16	.02	309	8.1	25.0	10.8	131
July	09	0815	1.15	.01	330	7.1	23.0	2.2	26
Aug.	02 22	0700 1500	1.29 1.37	.07 .04	472 156	6.9 6.7	24.5 23.5	4.8 6.7	58 79
Sept.	10 25	1430 1400	1.24 0.93		148 6,770	7.2 8.6	28.0 25.5	8.1 15.1	103 191
				October 199	1-April 1992				
Oct.	08 23	1200 0945	1.30 1.22	0.03	216 252	7.3 7.4	15.0 15.5	7.4 6.5	73 65
Nov.	15	0930	1.35	.09	342	7.4	10.5	5.6	50
Dec.	02 24	1400 0845	1.18 1.08	.02	353 422	7.9 8.1	21.0 10.5	6.8 8.0	76 72
Jan.	08 23	1200 1030	1.67	.04	222 296	7.4 8.4	7.0 10.0	7.4 10.4	60 93
Feb.	06 21	1030 0945	1.85 1.44	1.7	209 207	8.0 8.1	8.0 9.5	10.6 10.4	90 90
Mar.	03 18	1500 1000	1.34 1.23	.09	231 340	7.6 8.1	19.0 14.5	13.2	129
Apr.	01 17 30	1030 1050 1600	0.47 1.19 1.31	.31 .02 .02	235 419 2,050	7.4 8.5 8.3	13.0 21.0 20.0	8.6 16.2 17.1	82 181 190

Table 31.--Biweekly water-quality field measurements and sample analyses at site B2, October 1990-April 1992--Continued

LOCATION.—Lat 35 °17'20", long 76 °41'45"; Beaufort County, on right bank of agricultural drainage canal about 150 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455143.

DRAINAGE AREA.--Approximately 47 acres (0.074 mi²).

PERIOD OF RECORD .-- November 1988 through April 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Dat	te	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	Total phosphorus, ortho (mg/L as P)	Suspended sediment (mg/L)
				Water year	1991			
Oct.	18	<0.10	0.16	1.7	1.9	0.16	0.10	-
Nov.	14 29	6.10 0.20	.06 .07	.84 1.4	.90 1.5	.02 .26	.01	1 141
Dec.	12	4.60	.02	.48	.50	.03	.01	2
Jan.	03 18	3.40 6.60	.05 .03	.75 .67	.80 .70	.04	.02 .02	14 8
Feb.	07 22	1.70 <.10	.03	.87 .54	.90 .60	.06 .02	.02 .02	11 7
Mar.	07 27	3.20 .05	.02 .08	.68 1.1	.70 1.2	.06 .05	.04 .01	11 9
Apr.	10	<.05	.13	1.1	1.2	.17	.12	12
May		<.05 <.05	.06 .05	1.2 2.0	1.3 2.0	.18 .50	.11 .28	8 54
June	11	<.05	.05	1.0	1.1	.15	.05	-
July	09	<.05	.47	1.7	2.2	.54	.41	44
Aug.	02 22	2.70 .81	.24 .06	.96 .94	1.2 1.0	.13 .13	.08	11 15
Sept.	10 25	<.05	.03 .06	1.8 7.7	1.8 7.8	.27 1.10	.11 .22	24 150
			0	ctober 1991-/	April 1992			
Oct.	08 23	0.99 .53	0.06 .07	0.94 .53	1.0 ,60	0.12	0.07	14 20
Nov.	15	1.10	.09	.81	.90	.16	.09	15
Dec.	02	<.05	.02	.88	.90	.12	.05	
	24	<.05	<.01	-	1.0	.13	.02	48
Jan.	08 23	2.40	.05 .04	.75 .46	.80 .50	.07 .05	.04	16 12
Feb.	06 21	.17 <.05	.03 .02	.37 .58	.40 .60	.02 .08	.02	10 19
Mar.	03 18	<.05 .16	.02 .10	.48 .40	.50 .50	.05 .03	.03 .02	21 11
Apr.	01 17 30	.20 <.05 <.05	.06 .03 .11	.54 1.3 1.5	.60 1.3 1.6	.02 .18 .28	.02 .07 .12	22 19 31

Table 32.--Biweekly water-quality field measurements at site B2A, May 1991-April 1992

LOCATION.--Lat 35 °17'23", long 76 °41'46"; Beaufort County, on right bank of agricultural drainage canal about 15 ft upstream of flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora. Owner, U.S. Geological Survey (USGS); Hydrologic Unit 03020104; USGS downstream order identification number 0208455143.

DRAINAGE AREA.--Approximately 47 acres (0.074 mi 2).

PERIOD OF RECORD .-- May 1991 through April 1992.

REMARKS.--ft, foot; mi mile; mi ², square mile; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); --, no data.

Dat	e	Time	Water level (feet above sea level)	Specific conductance (µS/cm)	Temperature of water (°C)
		Ma	y 1991-April 19	92	
May	10 31	1200 1130	3.60	219 550	24.0 26.5
June	11	1300	3.34	209	26.5
July	09	0815	2.49	200	25.0
Aug.	02	0700	2.56	347	25.0
	22	1500	2.57	230	25.0
Sept.	10	1430	2.52	231	28.0
	25	1400	1.95	663	25.5
Oct.	08	1200	2.55	248	15.0
	23	0945	2.55	181	15.5
Nov.	15	0930	2.21	304	10.5
Dec.	02	1400	2.23	278	21.0
	24	0845	1.08	311	10.5
Jan.	08	1200	2.62	244	7.0
	23	1030	2.58	296	10.0
Feb.	06 21	1030 0945	2.60	184 198	8.0 9.5
Mar.	03	1500	2.57	216	19.0
	18	1000	2.57	310	14.5
Apr.	01	1030	2.61	179	13.0
	17	1050	2.56	279	21.0
	30	1600	2.53	144	20.0

Table 33.--Biweekly water-quality field measurements and sample analyses at site B3, October 1990-May 1992

LOCATION.--Lat 35 °17'10", long 76 °41'50"; Beaufort County, on left bank of agricultural drainage canal 600 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

DRAINAGE AREA .-- Approximately 68 acres (0.107 mi²).

PERIOD OF RECORD .-- November 1988 through May 1992.

REMARKS.--ft, foot; mi, mile; mi ², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water level (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation
				Water ye	ear 1991				
Oct.	18	1300	0.68	0.05	13,700	7.1	20.5	2.2	26
	26	1300	2.38		306	6.3	12.0	9.0	85
Nov.	16	1100	.72	.16	718	7.8	8.5	11.1	94
Dec.	12	1500	.78	.18	518	7.7	9.0	16.8	145
Jan.	04	1630	1.21	.33	498	7.0	10.0	14.4	126
	18	1000	.85	.13	539	7.8	6.0	10.0	80
Feb.	07	1500	.97	.35	367	7.2	13.5	8.8	85
	22	1500	1.71	.17	267	8.4	14.0	14.6	142
Mar.		1330	.94	.08	402	6.8	19.5	20	
	27	1445	1.80	.36	546	7.3	24.0	11.3	134
Apr.	10	0830	.71	.00	488	5.6	18.5	2.7	29
May	10	1530	.72	.27	568		23.0	5.1	-
	31	0930	.50	.07	771	7.1	22.5	3.7	43
June	11	1200	.62	.00	1,160	7.3	22.0	4.3	49
July	09	0930	.85	.07	350	7.1	24.0	1.5	18
Aug.	02	0800	1.16	.52	336	7.2	26.5	1.5	19
	22	1200	.98	.42	483	7.9	23.0	8.3	97
Sept.	10	1630	1.38	.00	6,100	6.6	25.0	1.5	18
	25	1200	.77	.00	12,200	7.2	22.0	1.6	19
				October 199	1-May 1992				
Oct.	08	1300	1.16	0.00	542	7.7	14.0	8.1	78
	23	1030	.84	.00	441	7.4	14.0	7.7	74
Nov.	15	1030	1.09	.10	958	7.3	10.5	5.7	51
Dec.	02	1530	.65	.00	642	7.9	20.5	9.2	102
	24	0935	.58	.00	666	7.7	9.0	7.4	65
Jan.	08	1330	1.81	.00	411	6.8	5.5	7.4	58
	23	1130	.75	.00	350	7.5	9.5	8.7	77
Feb.		1130	1.84	.00	785	7.7	7.0	8.7	73
	21	1045	.76	.00	323	7.8	7.0	12.4	101
Mar.		1200	.69	.10	341	5.7	15.0	11.2	111
	18	0900	.61	.00	349	7.9	9.5	5.4	47
Apr.	01	1145	.87	.16	272	8.0	18.0	13.2	140
	17	1200	.53	.00	840	7.4	22.0	5.2	59

Table 33.--Biweekly water-quality field measurements and sample analyses at site B3, October 1990-May 1992--Continued

LOCATION.--Lat 35 °17'10", long 76 °41'50"; Beaufort County, on left bank of agricultural drainage canal 600 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

DRAINAGE AREA.--Approximately 68 acres (0.107 mi²).

PERIOD OF RECORD, -- November 1988 through May 1992.

REMARKS.--ft, foot; mi, mile; mi², square mile; ft³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	Total phosphorus, ortho (mg/L as P)	Suspended sediment (mg/L)
				Water year	1991			
Oct.	18 26	<0.10 6.30	0.12	2.1 2.0	2.2 2.1	0.39	0.28	13 34
Nov.	16	3.60	.10	.80	.90	.01	<.01	4
Dec.	12	3.60	.03	.37	.40	.03	<.01	1
Jan.	04 18	3.10 5.90	.05 .06	.75 .64	.80 .70	.02 .01	.02	7
Feb.	07 22	.70 .70	.05	1.2 .47	1.3 .50	.03	.09	240 86
Mar.	07 27	3.20 .68	.02 .77	.58	.60 1.6	.06 .08	.03	9 26
Apr.	10	.07	.41	1.4	1.8	.19	.09	41
May	10 31	.06 <.05	.34	1.2 2.0	1.5 2.1	.16 .41	.09 .18	13 11
June	11	<.05	.06	2.5	2.6	.27	.09	3 2
July	09	<.05	.26	.94	1.2	.18	.12	
Aug.	02 22	3.30 1.40	.16 .08	1.1	1.3 .90	.08	.01	29 38
Sept.	10 25	<.05 <.05	.24 .20	1.2 1.8	1.4 2.0	.16 .21	.04 .06	19
			(October 1991-N	May 1992			
Oct.	08 23	<0.05 .33	0.09	0.51 .43	0.60 .50	0.13 .05	0.06	16 7
Nov.	15	.08	.34	1.1	1.4	.03	<.01	23
Dec.	02 24	<.05 <.05	.02 .02	.98 .68	1.0 .70	.21	.10 .03	4
Jan.	08 23	2.30 .80	.05 .03	.45 .37	.50 .40	.05 .03	.03 <.01	13 2
Feb.	06 21	.97 .92	.03 .03	.47 .37	.50 .40	.03 .03	.01 <.01	8
Mar.	03 18	1.00 <.05	.18 .06	.82 .74	1.0 .80	.03	.01 .04	2 2
Apr.	01 17	.98 .07	.05 .65	.35 1.2	.40 1.8	<.01 .20	<.01 .11	157 18
May	01	.12	.28	.62	.90	.08	.05	13

Table 34.--Biweekly water-quality field measurements at site B3A, May 1991-May 1992

LOCATION.--Lat 35 °17'08", long 76 °41'50"; Beaufort County, on left bank of agricultural drainage canal 45 ft upstream of flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

DRAINAGE AREA.--Approximately 68 acres (0.107 mi 2).

PERIOD OF RECORD .-- May 1991 through May 1992.

REMARKS.--ft, foot; mi mile; mi 2, square mile; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C).

Date	Time	Water level (feet above sea level)	Specific conductance (μS/cm)	Temperature of water (°C)
	Ma	y 1991-May 199)2	
May 10	1530	1.75	295	24.0
31	0930	3.08	250	27.5
June 11	1200	.64	299	26.0
July 09	0930	.88	275	28.5
Aug. 02	0800	1.05	280	27.0
22	1200	1.04	190	28.0
Sept. 10	1630	1.41	4,950	25.0
25	1200	.78	9,600	22.0
Oct. 08	1300	1.37	440	14.0
23	1030	.87	300	14.0
Nov. 15	1030	1.09	432	10.5
Dec. 02	1530	.87	426	20.5
24	0935	.88	333	9.0
Jan. 08	1330	1.83	216	5.5
23	1130	1.08	250	9.5
Feb. 06	1130	1.86	221	7.0
21	1045	1.31	219	7.0
Mar. 03	1200	1.15	248	15.0
18	0900	1.01	200	9.5
Apr. 01	1145	.98	207	18.0
17	1200	.87	180	22.0
May 01	1730	1.28	1,530	17.0

Table 35.--Biweekly water-quality field measurements and sample analyses at site C1, October 1990-April 1992

LOCATION.--Lat 35 °17'13", long 76 °41'13"; Beaufort County, on right bank of Campbell Creek, which receives inflow from sites B2 and B3; on State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455145.

DRAINAGE AREA.--Approximately 5,120 acres (8 mi 2).

PERIOD OF RECORD .-- April 1989 through April 1992.

REMARKS.--mi, mile; mi², square mile; ppt, parts per thousand; °C, Celsius; mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Date	Time	Water leve (feet above sea level)	Salinity (ppt)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation
			Water yea	ar 1991			
Oct. 18 26	1000 1100	0.63 .12	10.1 5.0	6.4 6.8	21.0 13.5	2.3	27
Nov.14 29	1400 1400	1,06	12.2 14.1	9.1 8.9	14.5 14.5	13.5 4.9	141 52
Dec. 13	1645	.26	15.2	6.9	13.5	7.9	83
Jan. 03 18	1330 1315	.78 .77	13.1 10.7	8.1 7.1	12.5 11.0	4.3 6.7	43 65
Feb. 07 22	1630 1300	.18 .18	5.4 10.9	6.5 7.8	11.5 12.0	7.4	70
Mar. 07 27	1700 1600	.27 .47	10.1 7.8	7.0 8.0	14.0 18.5	7.9	88
Apr. 10	0930	-	4.5	7.4	17.5	4.0	43
May 10 31	1800 1230	.49 .26	3.2 7.0	6.9	22.0 28.0	6.4 5.0	74 67
June 11	1500	.66	8.3	6.8	23.5	4.9	60
July 09	1045	.88	9.5	7.5	34.0	1.4	21
Aug.02 22	1000 1600	1.02	12.8 7.5	6.0 6.9	25.0	6.0 3.7	 47
Sept.11 25	1600 1430	1.04 1.12	10.2 9.9	7.0 7.1	26.0 24.0	4.7 3.5	62 45
		(October 1991	-April 199	2		
Oct. 08 22	1500 1545	1.43 1.18	10.8 11.5	7.8 6.8	20.0 21.0	4.8	56
Nov.14	1600	1.18	10.7	8.7	11.5	6.9	67
Dec. 02 23	1300 1620	.42 .14	14.3 15.6	8.3 7.7	16.0 9.0	7.4 10.9	82 104
Jan. 08 23	1505 0900	1.71	8.3 9.3	7.4 8.3	9.0 9.0	5.3 6.4	48 59
Feb. 06 21	0900 0900	1.66	7	8.9 7.3	=	10.6 3.5	
Mar. 03 18	1600 1100	.53 .23	9.1 10.4	7.7 7.3	20.5	6.6 5.9	2
Apr. 01 17 30	0915 0945 1430	.68 .23 1.33	8.4 9.4 11.4	7.8 7.5 6.1	13.0 15.0 16.0	6.1 2.2 6.0	61 23 65

Table 35.--Biweekly water-quality field measurements and sample analyses at site C1, October 1990-April 1992--Continued

LOCATION.—Lat 35 °17'13", long 76 °41'13"; Beaufort County, on right bank of Campbell Creek, which receives inflow from sites B2 and B3; on State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455145.

DRAINAGE AREA.--Approximately 5,120 acres (8 mi 2).

PERIOD OF RECORD .-- April 1989 through April 1992.

REMARKS.--mi, mile; mi², square mile; ppt, parts per thousand; °C, Celsius; mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Dat	te	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	Total phosphorus, ortho (mg/L as P)	Suspended sediment (mg/L)
				Water year	1991			
Oct.	18 26	<0.10 1.20	0.06 .08	0.64 1.0	0.70 1.1	0.03	<0.01 .10	9 39
Nov.	14 29	,20 <.10	.10 .08	.20 .72	.30 .80	.04 .04	.02 .02	4
Dec.	13	<.10	.04	.26	.30	.04	.02	25
Jan.	03 18	<.10 .40	.08	.52 .31	.60 .40	.02 .02	<.01 .02	7
Feb.		.60	.05	.85	.90	.03	.02	12
	22	<.10	.05	.35	.40	.01	.01	14
Mar.	07 27	.48 <.05	.06	.44	.50	.03	.02	4
Apr.	10	.12	.08	1.5	1.6	.05	.02	2
May	10 31	.07 <.05	.12 .02	1.1	1.2 1.4	.04	.02 <.01	5
June	11	<.05	.02	.98	1.0	.09	.01	22
July	09	<.05	<.01	-	.20	.20	.14	#20
Aug.	02 22	<.05	.05	.65 .97	.70 1.0	.28	.21 .12	8 7
Sept.	11 25	<.05 <.05	.06 .06	.94 .64	1.0 .70	.18 .08	.07 .04	9
			0	ctober 1991-A	pril 1992			
Oct.	08 22	0.05 <.05	0.08	0.52 .17	0,60	0.09 .04	0.05 .06	6 12
Nov.	14	<.05	.06	.34	.40	.01	<.01	2
Dec.	02 23	<.05 <.05	.03	.87 .29	.90 .40	.16 .03	.08 .02	3 6
Jan.	08 23	1.10 .46	.09 .07	.81 .83	.90 .90	.07 .05	.02 <.01	13 17
Feb.	06 21	<.05 .05	.02 .15	1.5 .75	1.5 .90	.12 .07	.03 <.01	9
Mar.	03 18	.09 <.05	.20 .06	.50 .64	.70 .70	.07 .05	.04 .02	9 17
Apr.	01 17 30	.17 <.05 <.05	.09 .03 .04	.71 .67	.80 .70 <.20	.04 .07 <.01	<.01 .01 .03	8 4

Table 36.--Storm-event sample water-quality analyses at site H1, June 22 and September 26, 1991

LOCATION.—Lat 35°26'44", long 76°22'25"; Hyde County, on left bank of agricultural drainage canal about 100 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458600.

DRAINAGE AREA.--Approximately 70 acres (0.109 mi 2).

REMARKS,--ft, foot; mi, mile; mi ², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water level (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation)
				199	91				
June	22	0800	0.90		2,680	100	5.000	-	550
	22	1530	.84	2	1,670	6.1	26.5	6.1	**
	22	1745	.97		2,910	100	(200)		
	22	2015	1.24	223	473	44			
	22	2030	1.23	77.0	525	1.00		575	
		2045	1.23		525				
	22 22	2100	1.23	950	546			750	
Sept.	26	1200	.81	0.051	8,730	6.3	20.5	2.0	23

Date		Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	
				1991			
June	22	1.60	0.64	2.0	2.6	0.11	0.05
	22	1.20	.44	1.7	2.1	.11	.04
	22	1.00	.39	2.5	2.9	.11	.03
	22	5.40	2.70	1.4	4.1	.35	.19
	22	5.50	2.90	1.9	4.8	.35	.22
	22	5.40	2.70	2.0	4.7	.26	.16
	22	5.40	2.60	2.3	4.9	.29	.18
Sept.	26	<.05	.43	1.1	1.5	.12	.04

Table 37.--Storm-event sample water-quality analyses at site H2, June 21-22 and September 26, 1991

LOCATION.--Lat 35°26′57", long 76°22′37"; Hyde County, on right bank of agricultural drainage canal about 90 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458700.

DRAINAGE AREA .-- Approximately 140 acres (0.219 mi 2).

REMARKS.--ft, foot; mi, mile; mi ², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus. Negative streamflow values indicate tidally driven flow in an upstream direction. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water leve (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation
				199	91				
June	21 22 22	2000 1230 1700	0.96 .84 1.04	1.1 .42 025	13,500 7,150	7.1 7.4	25.5 28.0	4.4 8.4	57 110
Sept.	26	1030	.84	.81	18,300	7.1	21.0	4.7	57

Date	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	Total phosphorus ortho (mg/L as P)
			1991			
June 21 22 22	0.07 .43 .90	0.32 .43 .60	0.88 1.7 1.5	1.2 2.1 2.1	0.05 .12 .14	<0.01 .03 .04
Sept. 26	.07	.08	.62	.70	.03	.01

Table 38.--Storm-event sample water-quality analyses at site H3, June 20-22 and September 26, 1991

LOCATION.--Lat 35°27'01", long 76°22'49"; Hyde County, on left bank of agricultural drainage canal about 800 ft downstream from tide gate; 0.1 mi southwest of U.S. Highway 264, 5 mi northwest of Swanquarter; Hydrologic Unit 03020105; USGS downstream order identification number 0208458800.

DRAINAGE AREA.--Approximately 104 acres (0.162 mi 2).

REMARKS.--ft, foot; mi, mile; mi ², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus; <, less than. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water leve (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation)
				199	91				
June	20	0800	1.53	1.4	13,400	-			
	21	2045	1.00	1.1	11,600	6.7	25.5	6.3	81
	21	2100	1.00	1.2	11,700				
	22	1400	.77	1.8	6,540	6.7	27.5	7.5	98
	22	1630	1.18	1.2	-	-	44	***	
	22	1645	1.06	1.2	-		**	**	
	22	1700	.87	1.1	6,070	-		-	**
Sept.	26	1130	.39		17,300	7.0	22.0	4.1	50

Dat	te	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	Total phosphorus ortho (mg/L as P)
				1991			. =
June	20	< 0.05	0.05	0.95	1.0	0.03	<0.01
	21	<.05	.06	1.5	1.6	.05	<.01
	21	<.05	.14	1.3	1.4	.04	<.01
	22	1.80	2.00	2.2	4.2	.06	<.01
	22	1.50	1.60	2.3	3.9	.05	.01
	22	<.05	.24	1.4	1.6	.03	<.01
	22	1.50	1.60	2.0	3.6	.06	<.01
Sept.	26	<.05	.04	.36	.40	.02	<.01

Table 39.--Storm-event sample water-quality analyses at site B2, October 26, 1990, and June 21-22, 1991

LOCATION.--Lat 35 °17'20", long 76 °41'45"; Beaufort County, on left bank of agricultural drainage canal about 150 ft downstream from flashboard riser; 0.2 mi north of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455143.

DRAINAGE AREA .-- Approximately 47 acres (0.074 mi 2).

REMARKS.--ft, foot; mi, mile; mi ², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water level (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation
				199	0				
Oct.	26	1100	2.61	3.7		344	-	420	
	26	1215	2.68	3.9	384	6.7	12.5	8.0	76
	26	1400	2.63	3.6		-	-		-
	26	1430	2.59	3.6		0.00	***	**	
	26 26 26	1500	2.55	3.5	_	-			
	26	1501	2.55	3.5			5 	**	**
	26	1730	2.36	3.1		**		**	
				199	1				
June	21	2000	2.50	1.6			-	***	-
	22	1315	1.91	1.1	***	11000	100	275	-

Dat	te	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	Total phosphorus, ortho (mg/L as P)	sediment
				1990				
Oct.	26	0.20	0.16	0.94	1.1	0.28	0.21	83
-	26	5.10	.06	1.5	1.6	.42	.36	33
	26	5.20	.06	1.4	1.5	.48	.37	48
	26	13.0	.08	1.6	1.7	.39	.30	41
	26	5.80	.05	1.4	1.4	.42	.32	
	26	6.20	.05	1.9	1.9	.35	.25	41
	26	6.00	.05	1.5	1.5	.39	.28	**
				1991				
June	21	5.50	0.25	1.3	1.6	0.14	0.06	**
	22	4.90	.25	1.0	1.3	.11	.05	

Table 40.--Storm-event sample water-quality analyses at site B3, October 26, 1990, and June 19-22, 1991

LOCATION.—Lat 35 °17'10", long 76 °41'50"; Beaufort County, on left bank of agricultural drainage canal about 600 ft downstream from flashboard riser; 0.2 mi south of State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455141.

DRAINAGE AREA. -- Approximately 68 acres (0.106 mi 2).

REMARKS.--ft, foot; mi, mile; mi², square mile; ft ³/s, cubic foot per second; μS/cm, microsiemens per centimeter at 25 degrees Celsius (°C); mg/L, milligram per liter; --, no data; N, nitrogen; P, phosphorus. Rounding may result in ammonia plus organic nitrogen concentrations that are not equal to the sum concentrations of the individual forms of nitrogen.

Da	te	Time	Water level (feet above sea level)	Streamflow, instan- taneous (ft ³ /s)	Specific conduc- tance (µS/cm)	pH (stan- dard units)	Temper- ature of water (°C)	Dis- solved oxygen (mg/L)	Dissolved oxygen (percent saturation)
				199	0				
Oct.	26	1100	2.67	2.2	- 4	Φ.,	22	-	20
	26	1300	2.38	2.0	306	6.3	12.0	9.0	85
	26	1400	2.29	1.8	**	-	44	**	
	26	1500	2.11	1.7		**			
	26	1630	1.91	1.5		0.990		275	77
	26	1631	1.91	1.5	22			-	
	26	1715	1.82	1.5	**	-	**	-	-
				199	1				
June	19	1745	3.05	1.9	596	_			-
	20	0830	2.70	2.9	596	44	1996	44.7	
	21	1945	1.36	.70		-		**	***
	21	2000	1.37	.95	869	***		**	**
	21	2015	1.37	1.2	869	44	44	-0.00	**
	22	1220	1.13	.40					44

Dat	te	Total nitrogen, NO ₂ + NO ₃ (mg/L as N)	Total nitrogen, ammonia (mg/L as N)	Total nitrogen, organic (mg/L as N)	Total nitrogen, ammonia + organic (mg/L as N)	Total phosphorus (mg/L as P)	Total phosphorus, ortho (mg/L as P)	Suspended sediment (mg/L)
				1990				
Oct.	26	4.00	0.21	2.2	2.4	0.51	0.45	17
	26	6.30	.09	2.0	2.1	.36	.28	34
	26	7.00	.09	1.6	1.7	.36	.27	-
	26	7.90	.07	1.5	1.6	.33	.24	**
	26	8.20	.05	1.4	1.4	.24	.20	
	26	7.90	.09	1.9	2.0	.31	.19	100
	26	9.00	.05	1.5	1.6	.27	.18	
				1991				
June	19	1.90	0.12	1.8	1.9	0.24	0.07	
	20	3.10	.09	1.4	1.5	.09	.03	200
	21	3.90	.12	.98	1.1	.07	.03	-
	21	4.30	.11	1.5	1.6	.07	.03	***
	21	4.00	.13	1.7	1.8	.14	.03	-
	22	4.40	.13	1.1	1.2	.06	.03	**

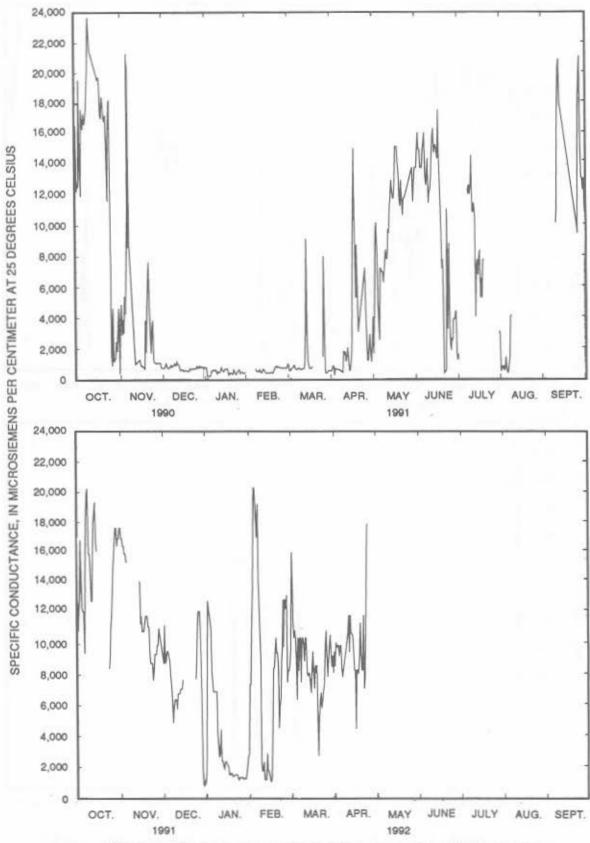


Figure 11.--Specific conductance for 14-hour composite samples at site H1.

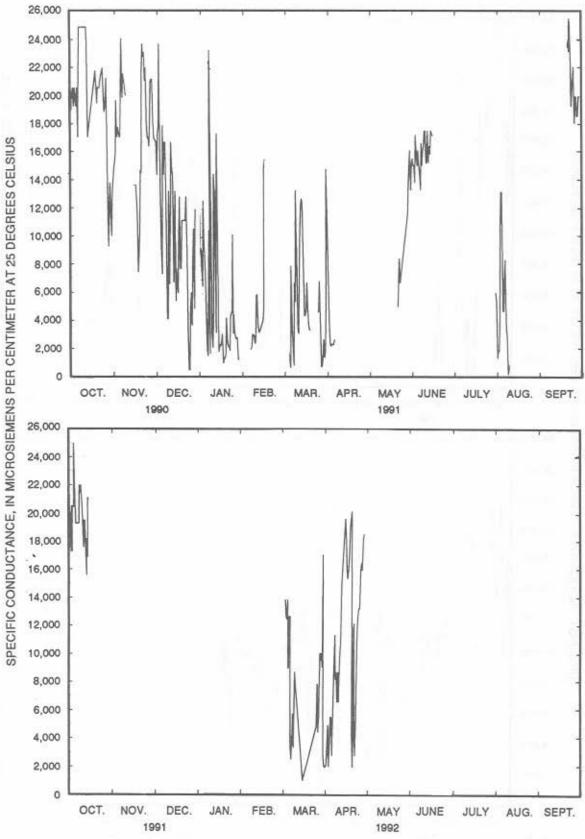


Figure 12.--Specific conductance for 14-hour composite samples at site H2.

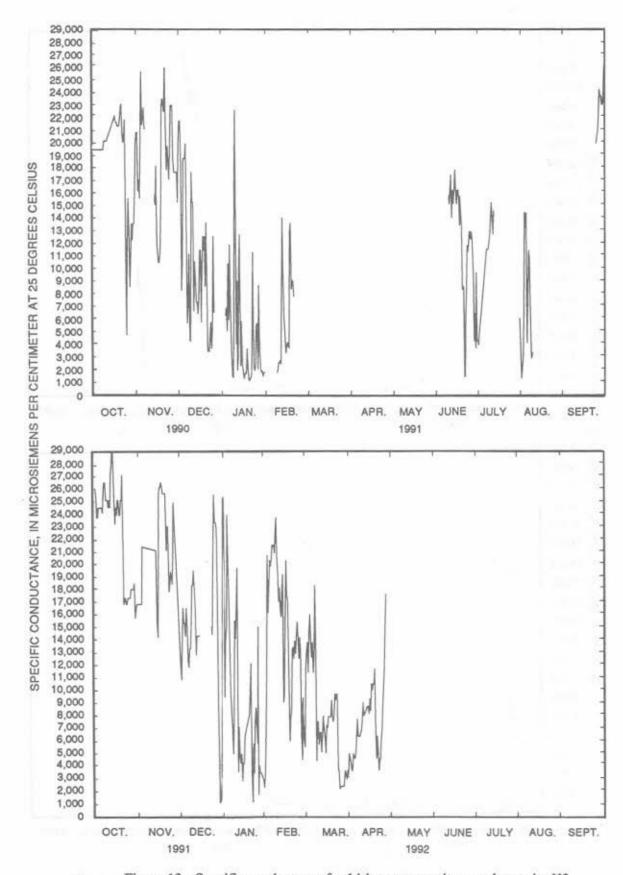


Figure 13.--Specific conductance for 14-hour composite samples at site H3.

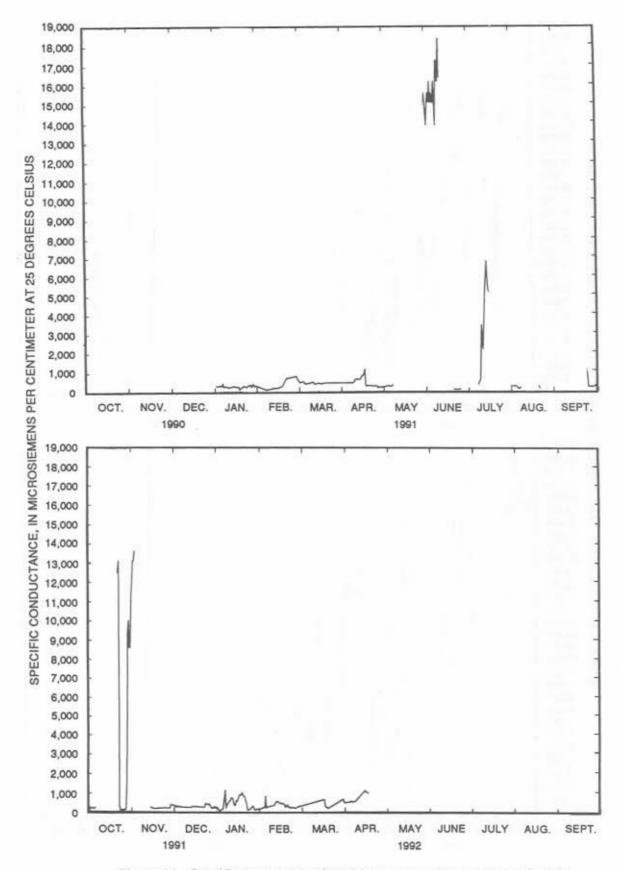


Figure 14.--Specific conductance for 14-hour composite samples at site B2.

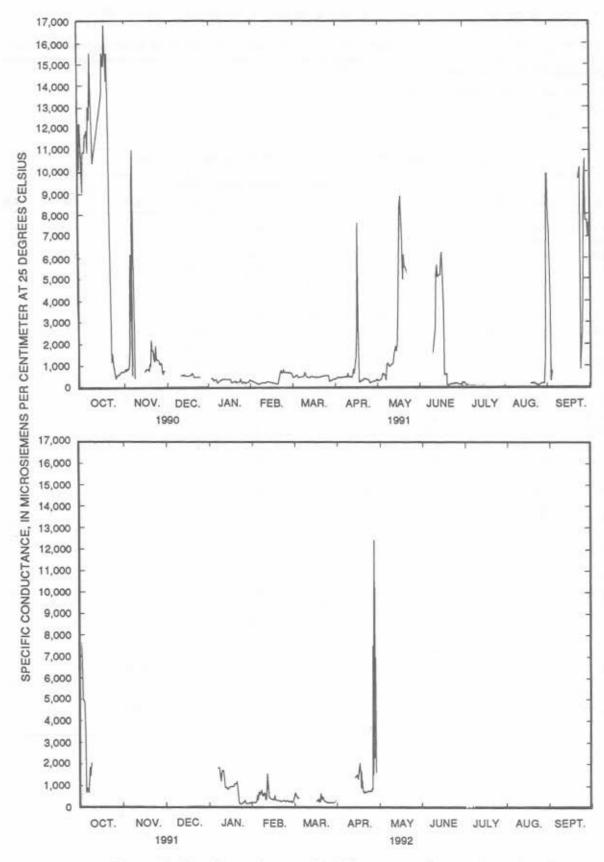


Figure 15.--Specific conductance for 14-hour composite samples at site B3.

Table 41 .-- Vertical profiles of salinity at site C1, October 1990-April 1992

LOCATION.--Lat 35 °17'13", long 76 °41'13"; Beaufort County, on right bank of Campbell Creek, which receives inflow from sites B2 and B3; on State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455145. Measurements were made at middle of channel.

DRAINAGE AREA.--Approximately 5,120 acres (8 mi 2).

REMARKS .-- mi, mile; mi 2, square mile; --, no data.

SALINITY, PARTS PER THOUSAND, OCTOBER 1990-APRIL 1992

					Depth (fee	t below wat	er surface)			
Date	Time	0.1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
10-18-90	1000	10.2	10.2	10.3	10.5	10.7	**			-
10-26-90	1100	3.5	4.2	4.5	4.7	4.8	4.9		+-	**
11-14-90	1330	11.4	12.0	12.6	13.3	13.9	14.1	i en	**	
11-29-90	1400	13.4	13.6	14.1	14.3	14.4	14.6	-		-
12-13-90	1700	14.3	16.0	16.4	16.5	16.5	100	5.00	**	-
01-03-91	1330	1.4	14.9	15.6	15.9	15.9	15.9	_		**
01-18-91	1330	2.4	11.7	13.3	13.3	13.3	13.3	-		
02-07-91	1630	.6	.8	2.1	11.6	12.0	12.0		**	-
02-22-91	1300	3.2	10.2	12.2	12.4	12.8	12.8	12.8		
03-07-91	1700	1.5	2.4	10.8	10.9	11.1	***	**	**	
03-27-91	1600	4.1	7.1	8.6	8.7	8.7	8.7	8.7		-
04-10-91	0930	.9	2.1	8.2	10.0	10.5	***	-	0.000	-
05-10-91	1800	.7	.8	4.1	6.2	7.2	***	77	-	
05-31-91	1230	4.5	8.1	8.1	8.3	8.0	8.2		-	-
06-11-91	1500	7.4	8.5	8.5	8.8	8.8				-
07-09-91	1100	10.5	10.5	10.9	11.0	11.0	220	22	122	1
08-22-91	1600	.5	1.5	9.9	11.3	11.4	11.5	55		-
09-25-91	1430	11.5	11.6	12.1	12.1	12.4	-	**		
11-14-91	1600	8.9	11.6	12.2	12.4	12.4	12.4			***
12-02-91	1300	14.7	15.1	15.7	15.7	15.7	**	***	**	-
01-23-92	0900	-	12.2	12.9	13.3	13.5	13.5	13.5		
02-06-92	0900	***	10.5	10.6	10.9	10.9	10.9			
02-12-92	1300	9.8	10.6	10.3	10.3	10.2	10.3	10.3		
02-21-92	0900	-	11.5	12.0	12.2	12.4	13.1			-
03-03-92	1600	3.0	7.3	10.7	11.4	11.4	**	-		
03-18-92	1100	5.2	11.2	12.4	12.7	13.0	13.0	13.0	221	22
04-01-92	0930	.8	10.5	12.0	12.2	12.2		-	++	
04-17-92	1000	5.5	10.4	10.5	10.6		***			
04-30-92	1430	8.8	9.3	9.4	9.4	9.5	9.5	9.5	***	

Table 42.--Vertical profiles of salinity at site C2, November 1990-April 1992

LOCATION.--Lat 35 °17'30", long 76 °40'33"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.75 mi downstream from site C1 at State Highway 33 bridge, 6 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455165. Measurements were made within 3 ft of sensor housing.

DRAINAGE AREA.--Approximately 6,342 acres (9.9 mi 2).

REMARKS .-- mi, mile; ft, foot, mi 2, square mile; --, no data.

SALINITY, PARTS PER THOUSAND, NOVEMBER 1990-APRIL 1992

					Depth (fee	t below wat	er surface)			
Date	Time	0.1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
11-02-90	0530	13.2	13.2	13.7	13.5	13.9	14.5			
12-13-90	1600	14.8	14.8	15.5	15.5	15.9		**		
01-16-91	1300	4.7	5.7	9.5	11.3	12.6	13.4	**		
01-18-91	1445	.7	12.0	13.0	13.9	13.7	0.65		***	0.00
02-19-91	1030	3.0	5.5	8.6	11.3		777	**	***	-
02-22-91	1100	4.0	9.6	12.8	13.0	13.5	13.4	1000	175	-
03-26-91	1030	9.0	8.8	8.8	8.7	9.1	***	-		
03-27-91	1130	8.1	8.1	8.1	8.1	8.9	9.1	725	-	-
04-23-91	0800	1.5	7.6	9.3	9.8	10.0	10.0	11.00		
04-29-91	1030	1.0	2.0	1.6	8.2	8.8	8.8	8.8		-
05-29-91	1030	8.6	8.1	8.1	8.2	8.6	8.7	-		
07-08-91	1230	7.5	10.8	10.8	10.8	**	**			
08-12-91	1145	9.8	9.8	9.8	10.1	10.1	10.1			0.000
08-15-91	0930	5.6	8.6	9.8	9.8	9.8	AT 12	Line		
09-17-91	1530	551.1	9.4	9.8	9.8	9.9	9.9	10.0	1877	-
09-25-91	0930	10.9	11.2	11.2	11.2	11.5	220		-	-
10-25-91	1315	10.3	12.0	12.3	12.7	12.8	12.8	22	44	
11-27-91	1200			15.9	15.9	15.9	15.9	15.9	-	0.00
12-03-91	1230	16.0	16.1	16.1	16.1	15.9				
01-22-92	1400	3.2	10.2	12.3	12.6	**			X 	**
01-23-92	1200	3.0	3.1	4.3	8.1	-	**		100	
02-12-92	1300	9.8	10.3	10.3	10.3	10.2	10.3	10.6	155	
02-14-92	1000	8.1	10.4	10.8	10.8	10.6	**	77.1		
03-11-92	1000	9.5	9.4	9.3	9.6					-
03-13-92	1045	10.2	10.3	10.3	10.3	10.3	10.3	-	-	
04-07-92	1315	8.6	9.0	9.2	10.9	11.0	11.0	220	22	
04-10-92	0930	7.6	11.3	10.6	10.6	1	-	22	24	-

Table 43.--Vertical profiles of salinity at site C3, November 1990-April 1992

LOCATION.--Lat 35 °17'25", long 76 °39'48"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.75 mi downstream from site C2, 6.5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455175. Measurements were made within 3 ft of sensor housing.

DRAINAGE AREA.--Approximately 7,501 acres (11.7 mi 2).

REMARKS.--mi, mile; ft, foot; mi 2, square mile; --, no data.

SALINITY, PARTS PER THOUSAND, NOVEMBER 1990-APRIL 1992

					Depth (fee	t below wat	er surface)			
Date	Time	0.1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
11-14-90	1130	13.4	13.4	13.2	13.4	14.4	14.9	244	-	-
12-13-90	1600	14.4	14.4	14.7	15.9	16.3	4.4	-	44	
01-16-91	1300	8.6	8.6	8.6	11.8	13.2	13.5	13.9		-
01-18-91	1500	8.6	11.3	11.8	14.7	14.7	14.7	14.7	14.7	
02-19-91	1030	8.5	9.2	10.7	11.5	12.1	12.2	7	- 37	1000
02-22-91	1100	4.7	9.7	11.3	12.3	12.6	13.0	13.4		910
03-26-91	1030	9.2	9.1	9.1	9.3	9.3	9.3	9.3	9.3	-
03-27-91	1100	10.2	10,3	10.3	10.3	10.3	10.3	10.3		-
04-23-91	0830	6.5	7.4	7.5	8.1	10.2	10.6	22000	1.00	
04-29-91	1045	2.8	4.6	7.0	8.3	8.8	8.8	8.8		-
05-29-91	1030	8.6	8.6	8.6	8.6	8.6	8.6			300
07-08-91	1245	8.9	9.0	10.9	11.1	11.3	11.3		**	
08-12-91	1215	10.7	10.7	10.7	10.7	10.7	10.7	10.7		
11-27-91	1215	17.1	17.0	17.0	17.0	17.1	17.1	17.6		
03-13-92	1030	8.1	8.1	8.1	8.2	9.1	10.7	-	/ E III	-
04-07-92	1300	10.2	10.3	10.3	10.3	10.5	11.0	11.4	22	-
04-10-92	0930	9.5	9.5	10.2	11.1	11.1	11.4	11.4	22	

Table 44.--Vertical profiles of salinity at site C4, November 1990-April 1992

LOCATION.—Lat 35 °16'55", long 76 °39'12"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 1.0 mi downstream from site C3, 7 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455195. Measurements were made within 3 ft of sensor housing.

DRAINAGE AREA.--Approximately 9,306 acres (14.5 mi 2).

REMARKS .-- mi, mile; ft, foot; mi2, square mile; --, no data.

SALINITY, PARTS PER THOUSAND, NOVEMBER 1990-APRIL 1992

					Depth (fee	t below wat	er surface)			
Date	Time	0.1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
11-02-90	1130	13.3	13.3	13.3	13.6	13.7	14.0	14.6		-
12-13-90	1530	15.8	15.8	15.8	15.8	15.9	15.9	16.3	16.3	-
01-16-91	1630	11.8	11.8	11.9	11.9	13.3	14.5	14.6	la la	-
01-18-91	1500	10.5	10.5	11.5	11.5	12.3	12.3	12.3	12.3	
02-19-91	1030	8.5	8.8	12.1	12.1	13.1	13.5	13.8	**	
02-22-91	1130	10.2	10.7	13.3	13.6	14.0	13.9	14.5	**	-
03-26-91	1030	9.4	9.4	9.4	9.4	9.4	9.5	9.6	***	
03-27-91	1100	10.7	10.7	10.7	10.4	10.4	10.4	-		
04-23-91	0830	6.9	8.3	9.0	9.3	10.2	11.1	-		-
04-29-91	1100	5.2	5.8	7.0	8.7	8.7	9.4	10.0	10.0	
05-29-91	1045	8.6	8.6	8.7	8.7	8.7	8.7	8.7		***
07-08-91	1300	9.8	9.8	9.8	10.1	11.4	11.4			***
08-12-91	1230	10.4	10.5	10.5	10.5	10.6	10.8	10.8	**	-
08-15-91	0915	10.8	10.6	10.6	10.6	11.7	11.8	11.8	44	
09-17-91	1515		10.8	10.8	11.0	11.1	11.3	11.3		77
09-25-91	1000	12.6	12.6	12.6	12.6	12.6	12.6	12.6		-
10-22-91	1400	11.4	11.5	11.8	12.1	12.5	12.6	12.7	12.7	
12-03-91	1300	17.7	17.7	17.7	17.7	17.7	17.7			_
01-22-92	1330	9.6	10.7	12.6	12.7	12.9	13.1	-	222	-
01-23-92	1200	11.1	11.2	11.3	11.3	11.7	12.2		**	-
02-12-92	1230	10.8	10.8	10.8	10.8	10.8	10.8			-
02-14-92	1000	9.1	9.1	10.1	10.9	11.6	11.6	11.9	**	
03-11-92	0930	10.4	10.5	10.5	10.4	10.5	10.5	**		
03-13-92	0930	8.7	8.7	8.7	8.7	10.1	11.3	200		-
04-07-92	1230	11.3	11.3	11.5	11.5	12.0	12.0	12.0	**	-
04-10-92	0930	9.8	10.5	10.8	11.5	11.5	11.7	11.8	122	-

Table 45 .-- Vertical profiles of salinity at site C5, December 1990-September 1991

LOCATION,—Lat 35 °17'00", long 76 °38'12"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.90 mi downstream from site C4, 8 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455205. Measurements were made within 3 ft of sensor housing.

DRAINAGE AREA.--Approximately 10,835 acres (16.9 mi²).

REMARKS .-- mi, mile; ft, foot; mi 2, square mile; --, no data.

SALINITY, PARTS PER THOUSAND, DECEMBER 1990-SEPTEMBER 1991

					Depth (fee	t below wat	er surface)			
Date	Time	0.1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
12-13-90	1500	17.2	16.9	16.9	16.9	16.9	16.9	16.9		-
01-16-91	1500	13.0	13.0	13.0	13.4	13.4	14.1	14.6		
01-18-91	1530	12.7	12.7	12.7	12.7	12.7	12.7	13.2	400	-
02-19-91	1000	8.8	12.1	12.2	13.5	13.9	14.1	14.9	400	ine.
02-22-91	1200	13.3	13.3	13.5	13.5	13.9	13.9	100		1000
03-26-91	1100	9.8	9.8	9.8	9.8	9.8	11.0	11.1		**
03-27-91	1100	11.1	11.1	11.1	11.1	11.1	11.1	11.1	***	
04-23-91	0900	8.1	8.4	9.8	10.2	11.0	11.0	11.0		-
04-29-91	1130	8.2	8.3	8.8	9.8	10.0	10.0	10.0		
05-29-91	1100	9.3	9.3	9.3	9.1	8.8	9.0	9.0	9.0	=
07-08-91	1300	11.1	11.1	11.1	11.1	11.0	11.0	11.1		122
08-12-91	1300	10.4	10.4	10.5	10.5	10.7	10.9	10.9	100	-
08-15-91	0900	11.3	11.4	11.3	11.3	11.4	12.0	12.0		
09-17-91	1500	**	11.1	11.3	11.1	11.3	10.7	11.3	-	44

Table 46 .-- Vertical profiles of salinity at site C6, December 1990-April 1992

LOCATION.--Lat 35 °17'12", long 76 °37'23"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.80 mi downstream from site C5, 9 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455220. Measurements were made within 3 ft of sensor housing.

DRAINAGE AREA.--Approximately 12,755 acres (19.9 mi 2).

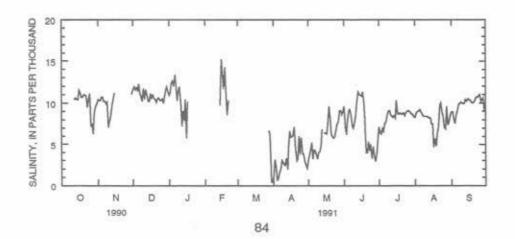
REMARKS .-- mi, mile; ft, foot; mi 2, square mile; --, no data.

SALINITY, PARTS PER THOUSAND, DECEMBER 1990-APRIL 1992

					Depth (fee	t below wat	er surface)			
Date	Time	0.1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
12-13-90	1630	16.2	16.2	16.2	16.5	16.5	16.5	16.5	16.5	-
01-16-91	1630	13.0	13.0	13.4	14.4	14.4	14.7	14.7		0.00
01-18-91	1530	13.3	13.3	13.3	13.3	13.3	13.3	14.3	14.3	-
02-19-91	1000	8.6	12.6	13.5	13.3	14.1	14.1	14.1	4.0	**
02-22-91	1200	12.4	13.5	13.7	13.8	14.2	14.2	14.2	***	-
03-26-91	1130	9.5	9.5	9.5	9.6	10.0	10.0	10.0		
03-27-91	1030	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	1.00
04-23-91	0930	8.3	9.5	9.8	10.4	11.0	11.1	11.1	11.1	
04-29-91	1200	8.6	9.1	9.1	9.6	9.8	9.8	9.8	9.8	
05-29-91	1100	9.6	9.3	9.3	9.3	9.3	8.9	9.3	9.3	_
07-08-91	1315	11.0	11.0	11.1	11.1	11.2	11.3	-	-	
08-12-91	1300	11.2	11.2	11.2	11.2	11.2	11.3	11.5		124
08-15-91	0900	10.4	11.1	11.1	11.4	11.7	12.0	12.0		
09-17-91	1445	***	11.8	11.8	11.7	12.0	12.0	12.0	-	
09-25-91	1045	14.9	14.7	14.7	14.7	14.9	14.9	15.1	15.1	275
10-22-91	1400	13.6	13.6	13.1	12.9	13.0	13.0	13.1	13.3	13.8
11-27-91	1300	18.3	18.3	18.3	18.3	18.3	18.3	18.3	***	-
12-03-91	1330	17.8	18.0	18.0	18.0	18.1	18.1	18.1	200	200
01-22-92	1300	12.0	12.1	12.4	12.4	12.5	12.6	2	4.22	9.00
01-23-92	1130	10.8	11.1	10.9	10.9	10.9	10.8	22	294	-
02-12-92	1215	12.6	11.9	12.3	12.3	12.3	12.6	12.6	12.6	
02-14-92	1030	11.5	11.6	11.8	11.8	12.0	12.7	12.7	-	000
03-11-92	0900	11.1	11.1	11.1	11.1	11.1	11.1			
03-13-92	0900	12.0	12.2	12.2	12.0	13.0	13.1	13.1		
04-07-92	1215	11.2	11.2	11.2	11.2	11.2	11.2	11.6	12.0	12.
04-10-92	0900	12.0	12.0	12.0	12.0	13.2	13.2	13.2		22

Table 47 .-- Daily mean values of salinity at site C1, October 1990-May 1992

LOCATION.--Lat 35 °17'13", long 76 °41'13"; Beaufort County, on right bank of Campbell Creek, which receives inflow from sites B2 and B3; on State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455145. Salinity sensor set in fixed position about 2 1/2 ft above bottom of channel; depth of water approximately 6 ft.


DRAINAGE AREA .-- Approximately 5,120 acres (8.0 mi 2).

PERIOD OF RECORD .-- October 1990 through May 1992.

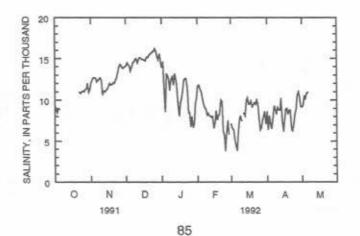
REMARKS.--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (19.1 ppt) occurred on February 17, 1991; minimum recorded salinity (0.2 ppt) occurred on March 30 and April 1, 1991.

SALINITY, PARTS PER THOUSAND, OCTOBER 1990-SEPTEMBER 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1		10.4	11.6	10.9			1.0	3.1	9.6	7.1	8.3	8.9
2		10.3	11.9	11.2		***	3.1	3.8	7.2	6.4	8.8	8.9
3	***	10.3	11.6	12.4		***	2.4	4.3	6.2	6.3	9.0	8.1
4	***	10.7	11.8	12.6			.7	5.2	8.0	6.9	9.0	7.6
5	777	10.7	11.5	12.0	0.777	-775	.8	3.2	9.1	6.6	9.2	8.5
6		10.2	12.2	13.3	***	No. 10.	1.5	4.3	9.2	7.5	8.9	9.0
7	3000.00	10.2	11.1	12.2			2.0	4.2	8.5	7.8	8.7	9.8
8	-	9.9	10.7	10.3		0.00	3.0	3.7	7.3	8.5	8.4	9.9
9	***	10.1	10.2	11.6	-		2.8	3.2	7.0	9.0	8.4	10.1
10	***	7.1	11.7	11.9	***	***	2.5	4.0	7.7	9.1	8.4	10.0
11		7.9	10.5	10.1		102	2.4	4.1	8.4	8.6	8.4	9.9
12	10.5	8.4	11.6	7.3	***	0444	3.3	4.8	10.1	8.4	8.3	10.0
13	10.6	9.7	10.9	9.0	20000	Direct :	2.0	6.8	11.3	8.3	8.2	10.4
14	10.4	10.5	10.2	7.9	9.8	***	4.6	***	11.0	8.5	8.2	10.2
15	10.4	11.1	10.2	10.4	15.2		6.6	6.4	10.9	8.2	7.5	10.5
16	11.5		11.1	5.8	13.6	****	5.9	6.4	10.8	10.3	7.5	10.4
17	11.2	646	10.6	10.1	11.7	***	6.0	6.3	11.3	8.7	4.7	10.3
18	10.7		10.9		14.2		6.1	7.4	10.1	8.7	5.7	10.1
19	10.7		10.6		11.5		7.1	9.6	8.0	8.8	4.8	10.0
20	11.0		10.4		8.6		4.4	8.1	4.0	8.7	6.2	10.1
21	10.9		10.1		10.2		3.0	6.3	4.0	8.7	7.2	10.3
22	10.8	4445	10.5	***	***		3.2	5.9	5.3	8.8	9.7	10.7
23	9.5	page 6	10.6		***	***	6.0	5.8	4.2	8.5	10.0	10.7
24	10.4	***	10.3	400		***	3.8	6.0	5.0	8.8	8.8	10.8
25	11.1		10.3	***	***	***	5.8	6.8	3.3	9.0	8.4	11.0
26	7.2	****	10.5			***	3.8	7.5	4.7	9.1	7.1	10.2
27	7.5		10.0	44.2			3.8	7.7	3.4	9.0	6.9	10.4
28	6.3		10.6	***	***	6.6	2.8	9.1	2.9	8.8	9.6	10.6
29	8.8	***	11.5	***	New C	6.2	2.5	9.1	3.8	8.7	7.4	9.1
30	9.6	11.1	11.9		***	.4	2.1	8.6	5.3	8.6	7.8	8.9
31	9.9		11.4			.4		8.9		8.3	8.5	

Table 47 .- Daily mean values of salinity at site C1, October 1990-May 1992--Continued

LOCATION.--Lat 35 °17'13", long 76 °41'13"; Beaufort County, on right bank of Campbell Creek, which receives inflow from sites B2 and B3; on State Highway 33, 5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455145. Salinity sensor set in fixed position about 2 1/2 ft above bottom of channel; depth of water approximately 6 ft.


DRAINAGE AREA.--Approximately 5,120 acres (8.0 mi²).

PERIOD OF RECORD .-- October 1990 through May 1992.

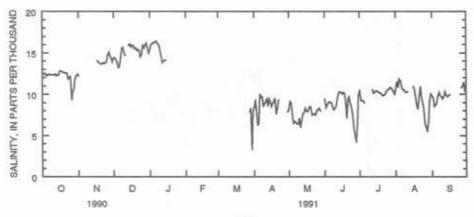
REMARKS.--mi, mile; ft, foot; mi ², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (16.5 ppt) occurred on December 26, 1991; minimum recorded salinity (0.2 ppt) occurred on January 16, 1992.

SALINITY, PARTS PER THOUSAND, OCTOBER 1991-MAY 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May
1	9.4	12.0	14.1	13.9	11.7	7.1	8.6	9.2
2	8.8	12.5	14.5	14.6	11.8	6.5	6.4	9.4
3	8.5	12.7	14.3	11.7	11.3	6.4	8.1	10.5
4	8.9	12.7	14.1	8.6	11.1	5.3	7.0	10.2
5	8.9	12.6	13.5	13.1	10.3	4.4	6.5	10.8
6		12.2	13.9	13.0	9.7	3.8	7.9	10.9
7		12.4	14.5	12.5	9.1	5.9	9.3	
8		12.6	14.6	11.2	8.9	7.6	8.9	
9		12.7	14.9	12.5	8.2	8.1	8.3	
10	***	12.3	15.0	12.8	8.4	7.5	9.1	***
11		10.6	14.5	11.8	8.1		8.8	122
12		11.1	14.9	13.2	8.1	8.4	8.8	***
13	***	11.0	15.1	12.6	7.9	8.1	10.2	-
14		11.2	15.0	11.7	8.0	10.0	7.5	0.777
15		11.4	14.9	9.5	6.6	10.3	6.2	
16		11.6	14.9	8.1	7.3	9.5	7.5	
17		12.0	14.8	9.6	8.7	9.5	8.9	
18		11.8	14.7	10.2	7.6	9.9	9.0	
19		11.9	15.2	11.0	8.1	9.2	8.3	trans.
20	***	12.1	15.1	12.4	8.4	9.4	8.8	3,000
21		12.0	15.4	12.6	10.0	9.7	8.8	-
22	10.9	12.4	15.6	12.6	9.8	9.5	6.5	0.00
23	10.8	12.7	15.7	11.5	6.3	10.0	6.2	0.000
24	11.0	13.4	15.8	8.5	5.7	9.5	7.2	
25	11.1	13.9	15.9	8.5	3.8	8.0	8.4	
26	11.0	14.3	16.2	6.8	6.1	6.4	8.8	-
27	11.3	14.2	15.9	8.0	7.5	6.7	10.6	
28	11.4	13.8	15.2	6.7	5.9	7.5	11.0	
29	12.0	13.8	14.9	7.2	***	8.1	10.4	
30	10.9	14.0	15.6	9.5		8.6	9.2	-
31	11.2		14.5	10.3		7.1		22

Table 48 .- Daily mean values of salinity at site C2, October 1990-May 1992

LOCATION.--Lat 35 °17'30", long 76 °40'33"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.75 mi downstream from site C1 at State Highway 33 bridge, 6 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455165. Salinity sensor set in fixed position about 2 1/2 ft above bottom of channel; depth of water approximately 6 ft.


DRAINAGE AREA.--Approximately 6,342 acres (9.9 mi²).

PERIOD OF RECORD .-- November 1989 through May 1992.

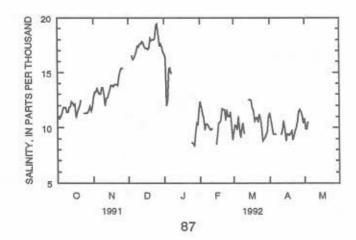
REMARKS.--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (17.0 ppt) occurred on January 4, 1991; minimum recorded salinity (0.2 ppt) occurred on March 30, 1991.

SALINITY, PARTS PER THOUSAND, OCTOBER 1990-SEPTEMBER 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept
1	12.4	12.2	14.4	15.3	200		8.4	8.2	9.4	10.5	10.5	9.8
2	12.4	***	14.4	16.0	***	***	9.3	9.1	8.4	9.2	11.5	9.5
3	12.5	***	14.1	16.1		***	8.0	8.9	8.8	9.2	10.8	8.5
4	12.3		13.8	16.3		***	6.3	7.3	9.0	9.2	11.8	8.7
5	12.2	-	13.2	16.2	5770	200	6.4	6.5	9.1	9.0	11.6	8.9
6	12.4		13.3	16.4		***	10.0	6.7	9.0	100	11.0	9.8
7	12.3	***	14.4	16.4	***	***	9.6	6.6	8.9	***	10.5	10.2
8	12.3		15.6	16.1			9.7	6.4	8.2		10.5	9.8
9	12.3	***	15.7	15.9	***	***	8.6	6.4	8.1	-00	10.3	9.
10	12.3	***	15.0	15.2	***		8.9	7.1	8.4	****	10.2	9.4
11	12.3	***	14.7	14.5	***	***	9.1	6.0	8.6		10.3	9.
12	12.4	***	-	13.8	100	No. of	9.4	6.9	9.6	10.5	***	10.
13	12.2	***	***	14.0	0.00	***	8.6	7.6	10.2	10.1	***	9.
14	12.3		15.9	14.1			9.4	7.8	10.3	10.2		9.
15	12.3		16.1	14.1			9.0	8.3	10.2	10.4		9.
16	12.8	***	15.7		man.		8.5	8.0	10.0	10.4	10.9	9.
17	12.8	14.0	15.9				8.9	7.9	10.2	10.2	10.6	
18	12.7	13.9	15.9		***		9.1	8.1	10.1	10.2	9.7	
19	12.6	13.7	15.5	13.3	***	***	9.5	8.5	9.2	10.1	8.5	
20	12.6	13.6	15.6		***	3000	7.6	8.4	7.1	9.9	8.2	
21	12.5	13.7	15.3				8.3	7.5	9.5	9.8	9.6	
22	12.5	13.8	15.4		***	***	9.3	7.6	9.7	9.9	10.9	
23	11.8	13.7	15.3		12.3	-		7.6	8.8	10.0	9.7	
24	12.0	13.8	14.5				***	7.5	8.5	10.3	8.9	-
25	12.1	13.9	14.7					8.0	7.5	10.5	8.3	
26	9.3	14.8	16.0		***		***	8.1	5.8	10.6	6.3	10
27	10.2	15.1	15.6			-	***	8.3	4.9	10.8	6.0	11.
28	10.7	14.6	15.9		-	7.9	***	8.0	4.2	10.7	5.5	11.
29	11.8	14.3	16.2			8.3	***	***	6.6	10.6	6.7	10.
30	12.2	13.9	15.7			3.3	7.9		9.7	10.3	9.1	10.
31	12.4	***	15.0	***		7.9	Service 1		4000	10.0	10.0	-

Table 48 .- Daily mean values of salinity at site C2, October 1990-May 1992--Continued

LOCATION.—Lat 35 °17'30", long 76 °40'33"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.75 mi downstream from site C1 at State Highway 33 bridge, 6 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455165. Salinity sensor set in fixed position about 2 1/2 ft above bottom of channel; depth of water approximately 6 ft.


DRAINAGE AREA.--Approximately 6,342 acres (9.9 mi²).

PERIOD OF RECORD .-- November 1989 through May 1992.

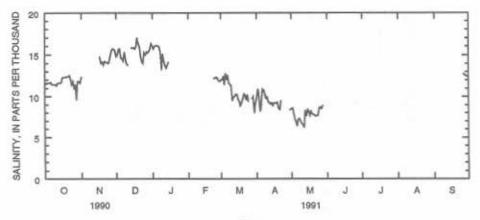
REMARKS.--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (20.3 ppt) occurred on December 25, 1991; minimum recorded salinity (3.1 ppt) occurred on January 2 and 3, 1992.

SALINITY, PARTS PER THOUSAND, OCTOBER 1991-May 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May
1	10.8	12.7		16.7	12.3	9.4	11.3	10.8
2	10.8	13.2	***	16.3	11.8	10.2	10.8	9.9
3	10.8	13.2	(966)	12.0	11.2	10.1	10.1	9.9
4	11.1	13.5	16.5	12.5	10.9	9.8	9.4	10.5
5	11.3	13.2	16.2	15.3	9.8	11.0	9.4	
6	11.8	13.0	16.3	15.4	10.3	9.7	9.4	
7	11.8	13.0	16.6	14.9	10.3	9.1		
8	11.8	13.6	16.9	2	10.1	10.0		0.00
9	11.4	13.6	17.4	444	9.9	10.4	***	1000
10	11.4	12.9	17.3		9.8	9.5	777.0	-555
11	11.8	12.0	17.6	1944	9.9		9.4	***
12	11.9	12.6	17.6		***	2000	9.8	5.000
13	12.3	12.7	17.8		***		10.6	
14	12.2	13.0	17.7	+		12.5	9.9	
15	12.0	13.4	17.3	3 7/1 0	8.5	12.5	8.8	-
16	12.1	13.8	17.2		9.5	12.4	9.4	-
17	10.9	13.8	17.2	***	10.4	11.8	9.4	
18	11.3	13.7	17.1	200	10.5	11.5	9.3	
19	11.7	13.9	17.2		10.7	10.6	9.5	
20	12.0	13.9	18.1		11.7	10.8	9.7	
21	12.4	13.9	17.9		11.6	10.9	8.9	
22		13.8	18.0		11.6	10.5	9.3	
23		14.7	18.0	***	10.7	11.2	9.7	-
24	11.3	15.2	18.1		11.6	10.8	10.0	2814
25	11.3	15.4	19.3	8.6	11.0	10.2	10.6	
26	11.3	15.4	19.4	8.5	11.0	8.8	11.4	
27	11.4		18.5	8.3	11.4	9.0	11.6	- Contract
28	11.6	***	17.4	9.6	10.4	9.1	11.4	
29	11.9		17.6	10.4	8.9	9.4	11.1	
30	11.5	***	17.3	10.3		9.6	10.4	
31	11.8	***	16.8	11.7	-	11.0		6.00

Table 49 .-- Daily mean values of salinity at site C3, October 1990-September 1991

LOCATION.—Lat 35 °17"25", long 76 °39"48"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.75 mi downstream from site C2, 6.5 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455175. Salinity sensor set in fixed position about 2 1/2 ft above bottom of channel; depth of water approximately 7 ft.


DRAINAGE AREA.--Approximately 7,501 acres (11.7 mi 2).

PERIOD OF RECORD .-- November 1989 through September 1991.

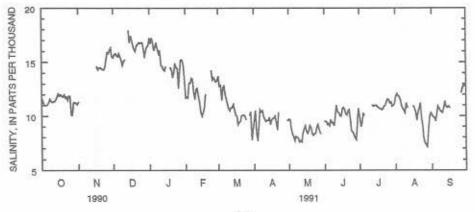
REMARKS.--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (17.7 ppt) occurred on December 31, 1990; minimum recorded salinity (4.0 ppt) occurred on March 30, 1991.

SALINITY, PARTS PER THOUSAND, OCTOBER 1990-SEPTEMBER 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1	11.5	12.3	14.8	16.0	1644	12.0	9.8	8.5	***		-	-
2	11.5	***	15.0	15.7	944	12.0	10.9	8.6	***	444	40.00	
3	11.6		15.6	16.0		12.3	10.3	8.0		222		
4	11.6		15.7	16.1		11.4	8.2	7.2		-		***
5	11.6	***	14.6	16.1		12.8	8.7	7.0				***
6	11.7		14.6	16.0	****	12.0	10.9	6.4	***	***		
7	11.4	***	14.3	15.9		12.6	10.8	7.2	***	***	***	***
8	11.4	***	15.3	15.3		11.6	10.3	7.3	***		***	
9	11.4	***	14.5	13.2	1000	11.4	9.8	7.0	200	***		
10	11.4		13.9	15.1		11.3	9.9	6.7		***		***
11	11.3		13.8	14.3		9.5	9.4	6.6	0.00			***
12	11.6			13.7		9.9	9.2	6.2	***		***	
13	11.6	***	***	13.4	***	10.0	9.1	8.3	***	***		
14	11.6	***	15.8	13.8	***	10.3	9.2	7.6		***		-
15	11.7	***	15.8	14.1	***	10.2	8.9	8.4			***	***
16	12.2		15.8		***	9.7	9.2	8.2		***		
17	12.3	14.7	15.7	-		9.4	9.2	7.7	***	***		
18	12.3	14.0	15.9	200		8.9	9.2	8.2	***	***	***	***
19	12.3	14.1	17.0	200		9.2	9.3	7.9	***			
20	12.4	13.8	16.3			9.8	8.5	7.8	***	***		
21	12.4	14.2	15.9			10.3	8.4	7.7	***	***	***	
22	12.5	14.1	14.9			10.1	9.5	7.6			***	+++
23	12.0	14.1	14.2	***	12.2	9.6	***	7.7	***	***	***	
24	11.4	14.0	14.0		12.2	10.2	Marke .	7.7		446	***	
25	11.8	14.1	15.2	***	12.3	9.4	***	8.6		***	****	
26	10.9	14.9	15.0		12.2		400	8.7	-	***	-	12.
27	11.4	15.5	15.3		11.9		***	8.5	***	9.60	***	12.
28	9.6	15.7	15.2		11.8	9.8		8.9			***	12.
29	11.8	15.6	15.4		***	10.0	***			-	***	12.
30	11.8	15.5	15.6	***	***	8.0	8.4	***	***	***	***	12.
31	11.6		16.3		***	9.1	***	***	***	400		

Table 50 .-- Daily mean values of salinity at site C4, October 1990-September 1991

LOCATION.--Lat 35 °16'55", long 76 °39'12"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3. 1.0 mi downstream from site C3, 7 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455195. Salinity sensor set in fixed position about 2 1/2 ft above bottom of channel; depth of water approximately 7 ft.


DRAINAGE AREA.--Approximately 9,306 acres (14.5 mi²).

PERIOD OF RECORD.--November 1989 through September 1991.

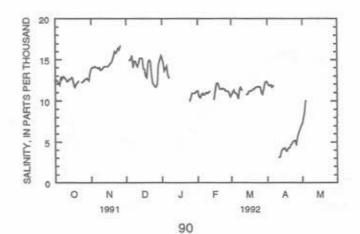
REMARKS,--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (18.8 ppt) occurred on December 14, 1990; minimum recorded salinity (5.2 ppt) occurred on March 30, 1991.

SALINITY, PARTS PER THOUSAND, OCTOBER 1990-SEPTEMBER 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept
1	11.7	11.3	15.4	17.2	11.7	13.7	9.6	9.7	9.5	9.9	11.8	10.1
2	11.4		15.7	16.7	11.8	12.8	10.5	9.6	9.5	9.0	12.1	9.9
3	11.1		15.8	17.2	11.7	12.9	8.5	8.8	9.2	9.3	11.9	9.9
4	11.0		15.6	16.9	13.1	11.5	7.7	8.3	9.3	10.2	11.8	9.5
5	11.0	Marin.	15.5	16.1	13.1	12.5	8.9	8.1	9.1	10.1	11.5	10.0
6	11.1		15.8	16.4	13.5	12.9	10.6	7.7	9.6		11.0	10.9
7	11.3	200	15.5	16.8	13.4	12.1	10.4	8.1	9.4		10.7	10.7
8	11.6	***	15.1	16.2	12.3	11.6	10.5	8.0	9.3	***	10.5	10.
9	11.4		14.7	15.8	11.6	11.1	10.0	7.9	9.1	***	10.3	10.4
10	11.3		15.1	16.1	12.5	10.7	9.7	7.6	10.1		11.2	10.3
11	11.4	9770	15.2	14.7	12.6	10.5	9.5	7.7	11.0	220	10.8	10.7
12	11.4			14.6	11.9	10.8	9.6	7.6	10.4	11.0		11.4
13	11.6	***		14.3	11.2	10.8	9.6	8.4	10.3	10.9		10.
14	11.8		17.9	14.2	10.4	11.1	9.9	8.8	10.0	11.0		10.
15	12.1		16.8	14.6	10.0	10.5	9.2	9.1	10.0	11.0		10.
16	11.9	1444	17.4		10.3	10.1	9.6	8.6	10.7	10.9	10.9	10.
17	12.0	14.6	17.1	***	10.7	10.0	9.8	8.4	10.8	10.8	10.8	***
18	11.9	14.3	16.5		12.0	9.2	9.8	8.6	10.6	10.7	10.4	***
19	11.8	14.5	16.2	14.5		9.4	10.0	9.1	10.2	10.7	9.6	***
20	12.0	14.5	16.0	14.2		9.5	9.4	8.9	10.1	10.6	10.3	-
21	11.7	14.4	16.5	13.6		10.0	8.7	8.4	10.5	10.7	10.7	***
22	11.8	14.3	16.6	14.1	***	10.1	10.3	8.2	10.6	10.9	11.2	
23	11.5	14.3	16.8	14.9	14.2	10.1		8.4	9.6	11.0	9.9	
24	11.9	14.6	16.7	14.5	13.4	10.0		8.4	8.6	11.3	9.1	
25	11.9	15.2	16.8	14.4	13.6	9.7		9.0	8.5	11.6	7.9	***
26	10.1	15.9	16.8	12.6	13.4		****	9.2	8.2	11.5	7.5	12
27	10.1	15.8	16.2	14.2	13.2			8.7	7.9	11.2	7.3	12.
28	11.3	16.1	15.4	15.2	13.3	10.1		8.4	7.8	11.3	7.1	12
29	11.3	16.3	16.1	15.2		10.4			9.6	10.9	8.8	12
30	11.2	15.5	16.4	14.8	3	7.8	9.6		10.7	11.0	10.0	12
31	11.1		16.5	13.2		8.6			***	11.2	10.3	

Table 51 .-- Daily mean values of salinity at site C4, near surface, October 1991-May 1992

LOCATION.--Lat 35 °16'55", long 76 °39'12"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 1.0 mi downstream from site C3, 7 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455195. Salinity sensor set in fixed position about 4 1/2 ft above bottom of channel; depth of water approximately 7 ft.


DRAINAGE AREA.--Approximately 9,306 acres (14.5 mi 2).

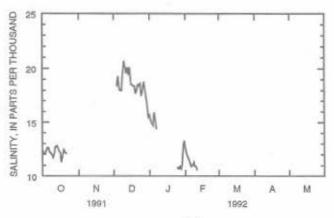
PERIOD OF RECORD .-- October 1991 through May 1992.

REMARKS.--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (17.7 ppt) occurred on November 24, 1991; minimum recorded salinity (2.4 ppt) occurred on April 11, 1992.

SALINITY, PARTS PER THOUSAND, OCTOBER 1991-MAY 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May
1	12.3	13.9		15.2	11.2	10.7	12.2	7.3
2	12.5	14.0		14.6	10.5	11.0	11.9	7.8
3	12.3	14.0		13.6	10.4	11.3	11.8	8.8
4	12.1	14.1	14.9	13.9	10.7	11.0	11.9	10.0
5	11.9	14.0	15.0	14.2	10.9	10.9	11.6	***
6	12.9	14.0	15.5	13.2	10.7	10.7	11.8	
7	12.6	13.9	14.0	12.8	10.8	10.3		-
8	12.9	14.0	14.8		11.0	11.4		-
9	12.8	13.7	14.8	***	10.9	11.6	2000	
10	12.6	13.8	14.4		11.0	11.3		***
11	12.3	13.9	14.1	***	11.1	***	3.1	
12	12.3	14.1	14.7	***		***	3.2	-
13	12.6	14.1	15.2				3.8	
14	12.6	14.1	15.2			10.8	4.1	
15	12.8	14.1	15.1	***	10.2	10.8	4.2	***
16	12.7	14.2	13.9		11.3	11.1	4.3	22
17	11.8	14.5	13.8		12.0	11.2	3.9	
18	11.6	14.6	13.0	5000	12.1	11.2	3.9	-
19	12.0	14.9	12.8		11.9	11.3	4.3	
20	12.1	15.3	14.7	***	11.4	11.4	4.3	
21	12.3	16.0	14.9	***	11.4	11.5	4.6	
22		15.8	14.8	***	11.5	11.6	4.8	-
23		16.0	13.0	***	11.4	11.7	5.0	
24	12.2	16.4	12.1	***	11.4	11.7	5.2	
25	12.3	16.2	11.9	10.0	11.2	11.7	5.2	-
26	12.5	16.7	11.7	10.5	11.2	11.6	4.6	***
27	12.6		11.7	10.9	11.1	10.9	5.7	
28	12.7		12.1	10.9	11.0	10.8	6.2	
29	12.6	***	14.4	10.9	10.5	11.5	6.5	
30	12.4		14.9	11.0		12.1	7.0	
31	13.3		15.5	11.2	***	12.3	***	

LOCATION.—Lat 35°16′55″, long 76°39′12″; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 1.0 mi downstream from site C3, 7 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455195. Salinity sensor set in fixed position about 2 ft above bottom of channel; depth of water approximately 7 ft.


DRAINAGE AREA.--Approximately 9,306 acres (14.5 mi²).

PERIOD OF RECORD.-October 1991 through February 1992.

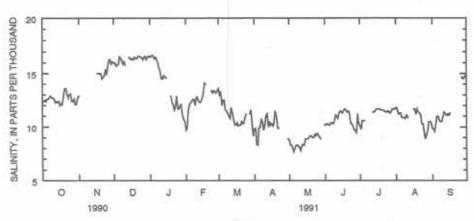
REMARKS.--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (21.1 ppt) occurred on December 11, 1991; minimum recorded salinity (8.8 ppt) occurred on January 28, 1992.

SALINITY, PARTS PER THOUSAND, OCTOBER 1991-FEBRUARY 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.
1	12.4	200	alana .	15.7	12.5
2	12.1	***	***	15.2	12.0
3	12.0	0.00		14.9	11.8
4	12.3		18.4	14.7	11.5
5	12.6		19.3	15.9	11.2
6	12.6	990	18.1	15.2	10.9
7	12.2		18.0	14.4	11.0
8	12.1	ann.	18.0		11.3
9	11.9	200	19.4		10.9
10	11.7		20.7	5000	10.9
11	12.1	100	20.1	m)mm	10.6
12	12.7	Page 1	19.6	***	***
13	12.8	1.000	20.1		
14	12.6	***	19.4		
15	12.3	***	20.1		***
16	12.2	***	18.6		***
17	11.3	200	18.5	***	
18	11.8	0.00	18.4		
19	12.5	***	18.4		
20	12.2	+++	17.7	377	
21	12.1	***	18.0	444	
22			18.5		-
23		No.	18.4	-	-
24		***	18.7		
25	1000	***	17.5	10.8	***
26		122	17.9	10.7	-
27	-		18.8	10.9	0.00
28	***	***	18.3	10.6	40
29	***	444	17.4	11.1	
30		***	16.5	12.8	***
31	***	16.00	15.5	13.3	-

Table 53 .-- Daily mean values of salinity at site C5, October 1990-September 1991

LOCATION.—Lat 35 °17'00", long 76 °38'12"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3. 0.90 mi downstream from site C4, 8 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455205. Salinity sensor positioned about 2 1/2 ft above bottom of channel; depth of water approximately 7 ft.


DRAINAGE AREA .-- Approximately 10,835 acres (16.9 mi²).

PERIOD OF RECORD .-- November 1989 through September 1991.

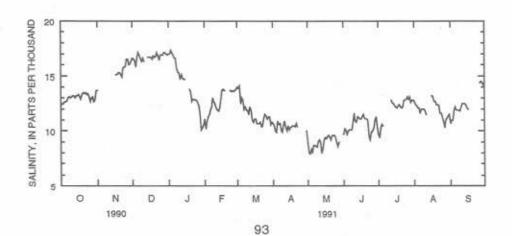
REMARKS.--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (17.5 ppt) occurred on December 6, 1990; minimum recorded salinity (6.6 ppt) occurred on May 5, 1991.

SALINITY, PARTS PER THOUSAND, OCTOBER 1990-SEPTEMBER 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1	12.3	12.9	16.0	16.5	9.7	13.6	9.8	8.8	10.2	10.1	11.8	9.9
2	12.4	(444)	16.0	16.6	9.9	13.0	9.9	8.3	10.3	9.8	11.7	9.8
3	12.5		15.7	16.7	11.4	13.3	8.4	8.3	10.3	10.6	11.2	9.6
4	12.4		15.8	16.6	12.1	12.0	8.3	8.0	10.2	10.6	11.3	10.4
5	12.6	-	15.9	16.4	12.3	12.5	9.9	7.7	10.2	10.6	11.3	11.0
6	12.6		16.5	16.5	12.4	12.5	10.0	8.0	10.4	222	10.9	11.0
7	12.8		16.4	16.3	12.6	11.6	10.7	8.3	10.4	200	10.9	10.6
8	12.9	***	16.2	16.0	12.6	11.5	10.4	8.3	10.3		10.9	10.5
9	12.7	2777	15.9	15.5	12.0	11.2	9.7	8.2	10.5		10.8	10.5
10	12.7		16.1	15.2	12.8	11.0	10.2	8.1	11.1	***	11.1	10.9
11	12.6		15.8	14.5	12.7	10.8	11.0	7.8	11.0		10.9	11.4
12	12.3	***		14.5	12.4	11.8	11.2	8.3	10.8	11.4	***	11.2
13	12.4	***		14.8	12.3	11.4	10.0	8.4	11.3	11.4	***	11.1
14	12.3	***	16.5	14.7	12.4	10.7	10.5	8.3	11.5	11.5	***	11.2
15	12.4		16.4	14.6	12.7	10.2	10.2	8.9	11.4	11.7		11.1
16	12.0		16.3	444	13.0	10.2	10.3	8.9	11.3	11.7	11.7	11.3
17	12.2	15.0	16.4	***	14.1	10.4	10.1	8.9	11.6	11.7	11.7	
18	12.1	15.0	16.3		14.0	10.1	10.3	9.0	11.7	11.7	11.2	
19	12.8	15.0	16.5	12.9		10.2	11.5	9.2	11.6	11.6	11.7	
20	13.6	15.0	16.4	12.3		10.2	11.1	9.2	11.4	11.6	11.4	****
21	13.6	14.5	16.4	12.1	***	10.5	9.9	9.0	11.5	11.6	11.3	222
22	13.1	14.7	16.6	11.6	***	10.3	9.9	9.0	11.3	11.5	11.1	
23	12.7	14.8	16.6	11.8	13.4	10.4		9.3	10.4	11.4	10.3	***
24	13.0	15.4	16.5	12.9	13.2	10.9		9.2	10.3	11.4	10.3	1000
25	13.1	14.9	16.5	11.7	13.4	11.2		9.4	10.1	11.5	9.6	***
26	12.4	15.7	16.3	11.7	13.3	3355		9.3	9.7	11.4	8.9	14.7
27	12.4	16.3	16.5	12.0	13.2		775	9.1	9.7	11.3	9.3	14.5
28	12.6	16.3	16.6	12.1	13.4	11.2		8.9	9.4	11.5	9.6	14.6
29	12.1	15.9	16.3	11.1	***	11.6	***		11.2	11.7	10.5	14.8
30	12.1	16.1	16.5	10.7	-	10.3	8.9		10.4	11.7	10.5	14.9
31	12.7	***	16.6	10.5		9.2			777	11.7	10.4	***

Table 54.--Daily mean values of salinity at site C6, October 1990-September 1991

LOCATION.--Lat 35 °17'12", long 76 °37'23"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.80 mi downstream from site C5, 9 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455220. Salinity sensor positioned about 2 1/2 ft above bottom of channel; depth of water approximately 7 ft.


DRAINAGE AREA.--Approximately 12,755 acres (19.9 mi²).

PERIOD OF RECORD .-- November 1989 through September 1991.

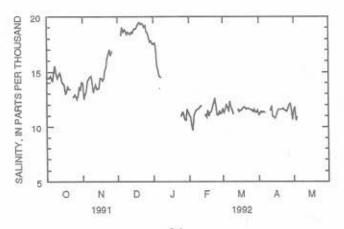
REMARKS.--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (17.9 ppt) occurred on December 6, 1990; minimum recorded salinity (6.3 ppt) occurred on May 2, 1991.

SALINITY, PARTS PER THOUSAND, OCTOBER 1990-SEPTEMBER 1991

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept
1	12.5	13.7	16.6	17.0	11.1	14.0	10.7	9.0	9.7	9.7	12.7	10.7
2	12.4		16.5	17.0	10.2	13.9	10.5	8.0	10.2	9.4	12.4	11.0
3	12.5		16.3	17.3	10.8	14.1	10.0	7.9	10.0	10.2	12.3	11.0
4	12.6		15.8	17.1	11.3	12.5	9.9	8.3	9.7	10.6	12.1	11.9
5	12.7		16.7	16.9	11.5	13.0	10.9	8.0	10.0	10.5	12.1	12.2
6	12.7		17.1	16.6	11.9	12.8	10.6	8.7	10.1		11.6	11.5
7	13.0		16.9	16.6	12.2	12.0	10.7	8.7	10.1		12.0	11.9
8	13.1		16.5	15.7	13.0	12.2	10.0	8.6	10.1	***	12.0	11.9
9	13.0	400	16.3	15.3	12.7	11.9	9.9	8.5	10.7	***	12.0	11.8
10	13.1		16.6	15.3	12.4	11.9	10.6	9.0	11.6		11.9	12.1
11	13.2	***	16.3	14.7	12.1	11.5	10.9	9.2	10.9	***	11.5	12.5
12	13.2	(555)		15.1	11.9	12.2	10.3	9.0	10.8	12.8		12.5
13	13.0	No.		14.8	11.8	11.9	10.0	8.0	11.3	12.6	***	12.5
14	13.2		16.7	14.7	12.1	11.0	10.5	8.3	11.2	12.5	***	12.4
15	13.2	***	16.7	14.7	12.9	10.8	10.1	9.2	11.1	12.3		12.1
16	13.3		16.7	-	13.7	11.1	10.3	9.4	11.1	12.2	13.2	12.0
17	13.1	15.1	16.7	444	13.8	11.1	10.4	9.3	11.3	12.1	13.1	
18	12.9	15.1	16.5	No.	13.7	10.7	10.5	9.5	11.5	12.3	12.7	
19	13.3	15.3	16.8	13.8	777	10.7	10.5	9.6	11.2	12.4	12.7	***
20	13.5	15.3	16.7	13.5	***	10.7	10.4	9.4	11.1	12.2	12.4	***
21	13.4	15.1	16.8	12.7		10.8	10.7	9.2	11.1	12.1	12.4	***
22	13.5	14.9	17.1	12.9		10.4	10.4	9.6	10.9	12.2	12.3	***
23	13.3	15.7	16.8	12.9	13.7	10.5		9.6	9.4	12.8	11.6	***
24	13.4	15.8	16.4	12.8	13.6	11.2		9.6	9.2	12.8	11.6	***
25	13.1	15.8	16.9	12.8	13.7	11.5		9.4	9.9	12.9	11.3	-
26	12.7	16.5	16.9	12.6	13.6	11.4	***	9.0	10.0	13.1	10.9	14.
27	13.0	16.5	16.9	12.3	13.7	11.1	***	8.6	10.3	12.9	10.3	14.
28	13.1	16.0	17.1	11.7	13.8	11.3	***	9.0	11.0	13.1	11.0	14.
29	12.7	16.1	17.1	10.1	***	11.3	***		11.3	12.6	11.2	14.
30	12.8	16.3	17.0	10.3		10.6	10.0		10.4	12.8	11.4	14.
31	13.7	****	16.9	10.6		10.8		4.00	0.00	12.8	11.5	

Table 55.--Daily mean values of salinity at site C6, near surface, October 1991-May 1992

LOCATION.--Lat 35 °17'12", long 76 °37'23"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.80 mi downstream from site C5, 9 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455220. Salinity sensor positioned about 4 1/2 ft above bottom of channel; depth of water approximately 7 ft.


DRAINAGE AREA.--Approximately 12,755 acres (19.9 mi²).

PERIOD OF RECORD .-- October 1991 through May 1992.

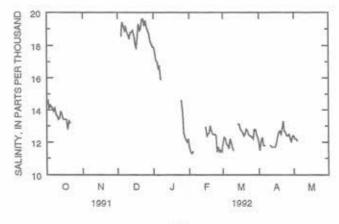
REMARKS.--mi, mile; ft, foot; mi², square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (19.9 ppt) occurred on December 22 and 23, 1991; minimum recorded salinity (8.5 ppt) occurred on February 3, 1992.

SALINITY, PARTS PER THOUSAND, OCTOBER 1991-MAY 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May
1	14.5	14.0		17.5	11.1	11.6	11.1	11.5
2	14.4	12.5		17.6	10.9	11.3	11.2	11.8
3	14.4	12.9		17.3	10.1	11.6	11.4	10.6
4	14.6	13.2	18.3	15.6	9.7	12.0	11.3	10.9
5	14.4	14.2	19.0	15.1	11.0	11.8	11.4	-
6	14.1	14.3	18.6	14.6	11.3	11.4	11.3	- 11
7	14.8	14.5	18.8	14.5	11.5	12.3	775	835
8	15.5	14.6	18.7	-	11.6	11.8	020	-
9	14.8	14.1	18.4		11.7	11.6	888	
10	14.4	13.1	18.6	***	11.8	11.2	5572	-
11	14.6	13.4	18.5		11.9	***	11.5	1944
12	14.9	13.8	18.4			***	11.9	-
13	14.7	13.4	18.6	-		-	11.0	0.77
14	14.1	13.5	18.5			11.6	10.9	
15	13.9	13.5	18.8		11.1	11.4	10.8	-
16	13.8	14.4	18.9	5	10.9	11.5	11.0	0.555
17	13.0	14.4	18.9		11.5	11.5	11.4	-
18	13.1	14.2	19.1		11.0	11.7	11.6	-
19	13.6	14.4	19.4		11.3	11.8	11.6	55
20	13.4	15.1	19.5		11.4	11.8	11.6	- 75
21	13.4	15.4	19.3	-	11.8	11.6	11.6	-
22		16.2	19.4		12.2	11.7	11.7	
23		16.6	19.3	555.1	12.6	11.7	11.5	
24	12.7	17.0	19.0		11.9	11.6	11.5	
25	12.9	16.5	19.2	11.0	11.1	11.6	11.4	*
26	12.7	16.8	18.7	11.3	11.1	11.5	11.6	22
27	12.5		18.5	11.2	11.4	11.4	12.0	-
28	12.9	***	18.1	10.7	11.2	11.6	12.1	7
29	13.6	277	17.7	10.6	11.3	11.3	11.7	- 5
30	13.3		17.8	11.6	-	11.3	10.7	2
31	14.0	5.00	17.5	11.3	***	11.5		9

Table 56 .-- Daily mean values of salinity at site C6, near bottom, October 1991-May 1992

LOCATION.--Lat 35 °17'12", long 76 °37'23"; Beaufort County, on left side of channel in Campbell Creek, which receives drainage from agricultural drainage canals B2 and B3; 0.80 mi downstream from site C5, 9 mi east of Aurora; Hydrologic Unit 03020104; USGS downstream order identification number 0208455220. Salinity sensor positioned about 2 ft above bottom of channel; depth of water approximately 7 ft.


DRAINAGE AREA.--Approximately 12,755 acres (19.9 mi 2).

PERIOD OF RECORD .-- October 1991 through May 1992.

REMARKS.--mi, mile; ft, foot; mi 2, square mile; ppt, parts per thousand; ---, no data. Maximum recorded salinity (20.1 ppt) occurred on December 23, 1991; minimum recorded salinity (9.1 ppt) occurred on February 4, 1992.

SALINITY, PARTS PER THOUSAND, OCTOBER 1991-MAY 1992

Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May
1	14.5	2.50	-	17.9	11.7	11.9	11.9	12.4
2	14.6		***	17.6	11.4	12.3	11.5	12.3
3	14.1	-		17.1	11.3	12.2	12.1	12.2
4	14.3	1000	18.6	17.0	11.4	11.9	12.3	12.
5	14.2		19.4	16.6		11.8	11.8	-
6	14.1	***	19.2	16.7	***	11.6	11.8	
7	13.9		18.9	15.9	***	12.2		
8	14.1		19.1			12.0		
9	13.7		18.8		-	11.7	***	
10	13.6	***	18.7	***	(100	11.5		
11	13.4	***	18.4			***	11.8	-
12	13.5	***	18.8	1000			11.7	111
13	13.9	***	18.8	P000			11.7	-
14	13.7		18.9			13.1	11.7	-
15	13.4	-22	18.6		12.9	13.1	11.7	2
16	13.4	***	18.2	***	12.4	12.8	11.9	-
17	13.4		17.8		12.5	12.7	12.3	
18	13.4		18.4	-	12.6	12.6	12.6	-
19	12.8	444	19.3	***	13.0	12.4	12.7	-
20	13.3	***	18.9	***	12.7	12.5	12.5	
21	13.2	144	19.0	222	12.5	12.8	12.8	-
22			19.6		12.5	12.7	13.3	-
23			19.6	222	12.5	12.5	12.7	
24	***		19.2		12.4	12.4	12.6	
25	***		19.5	14.6	11.4	12.4	12.4	-
26			19.1	13.8	11.7	12.3	12.4	
27			18.9	12.6	11.4	12.2	12.5	
28	444	***	18.7	12.3	11.5	12.8	12.2	4
29	***		18.3	12.1	11.4	12.8	12.0	24
30			18.1	12.0		12.5	12.4	
31	7		17.9	12.2	22	12.3		- 2

REFERENCES

- Bales, J.D., 1990, Data-collection program for Pamlico River estuary model calibration and validation, in Spaulding, M.L., ed., Estuarine and coastal modeling: New York, American Society of Civil Engineers, p. 492-501.
- Edwards, T.K., and Glysson, G.D., 1988, Field methods for measurement of fluvial sediment: U.S. Geological Survey Open-File Report 86-531, 118 p.
- Fishman, M.F., and Friedman, L.C., 1985, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Open-File Report 85-495, 709 p.
- Garrett, R.G., 1992, Water-quality data from continuously monitored sites in the Pamlico and Neuse River estuaries, North Carolina, 1990-91: U.S. Geological Survey Open-File Report 92-110, 196 p.
- Garrett, R.G., and Bales, J.D., 1991, Water-quality data from continuously monitored sites in the Pamlico and Neuse River estuaries, North Carolina, 1989-90: U.S. Geological Survey Open-File Report 91-465, 151 p.
- Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. C1, 58 p.
- Hardy, A.V., and Hardy, J.D., 1971, Weather and climate in North Carolina: Raleigh, North Carolina State University, Agricultural Experiment Station, Bulletin 396.
- Miller, R.L., Bradford, W.L., and Peters, J.E., 1988, Specific conductance--theoretical considerations and applications to analytical quality control: U.S. Geological Survey Water-Supply Paper 2311, 16 p.
- Treece, M.W., Jr., and Bales, J.D., 1992, Hydrologic and water-quality data in selected agricultural drainages in Beaufort and Hyde Counties, North Carolina, 1988-90: U.S. Geological Survey Open-File Report 92-498, 89 p.
- Wilder, H.B., Robison, T.M., and Lindskov, K.L., 1978, Water resources of northeast North Carolina: U.S. Geological Survey Water-Resources Investigations Report 77-81, 113 p.

CONVERSION FACTORS, VERTICAL DATUM, TEMPERATURE, AND DEFINITIONS

Multiply	by	To obtain
	Length	
inch (in.)	25.4	millimeter
foot (ft)	0.3048	meter
mile (mi)	1.609	kilometer
	Area	
square mile (mi ²)	2.590	square kilometer
acre	4,047	square meter
	Volume	340
gallon (gal)	3.785	liter
	Flow	
cubic foot per second (ft ³ /s) cubic foot per second per	0.02832	cubic meter per second
square mile [(ft ³ /s)/mi ²]	0.01093	per square kilometer [(m ³ /s)/km ²]
	Mass	
ounce, avoirdupois (oz)	28.35	gram
	Specific Conductance	
micromho per centimeter at 25 degrees Celsius (μmho/cm at 25 °C)	1.000	microsiemens per centimeter at 25 degrees Celsius

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929--a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Temperature: In this report, temperature is given in degrees Celsius (${}^{\circ}$ C), which can be converted to degrees Fahrenheit (${}^{\circ}$ F) by the following equation: ${}^{\circ}$ F = 1.8 (${}^{\circ}$ C) + 32

Definitions used in this report:

Water year - The period October 1 through September 30, determined by the calendar year in which it ends.

